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may be difficult to obtain insight into the relation between it size and the plant,

compensator, and design specifications for the robustness problem. We derive

bounds and approdmations for the structured singular value as a method for

providing such insight. Our results are applied first to analyse robustness diffi-

culties that may be associated with an il-conditioned plant, and next to develop

design rules. In particular, we develop a procedure for selecting weighting. to be

used in the LQG/LTR and H* synthesis problem. so that the solutions to these

optimization problems tends to minimise the structured singular value.
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Chapter 1

Introduction

The problem of designing a feedback system to satify a performance specific.-

tion and to be robustly stable against plant modelling errors i of fundamental

importance in control theory. Indeed, over the last 10 years, this problem has

received renewed attention, particularly in the context of multivariable systems

(e.s. [DoSSl], [SLHs], IFra.21, [Fr 8s7, [Doy87], [Fra87]). Sbua value analy-

sis, based upon the singular value norm of a matrix transfer function, has served

as an important tool for characteiing both performance and stability robustness

propertis of a multivariable feedback system, and has allowed the generaliza-

tion of many useful concepts from classical feedback theory for scalar system to

multivariable systems.

Unfortunately, singular value analysis techniques are not applicable to many

design problem of interest. For example, singular value robustness analysis is

most useful when uncertainty is isolated at only one point in the system. When

uncertainty and modelling errors are present at several points in the system,

singular value analysis tends to yield estimates of stability robustness that are
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either optimistic (by testing robustne against only one modelling error at a

time) or pessimistic (by testing against a broader class of uncertainty than is

actually present). Furthermore, singular value analysis is useful only for test-

ing nominal performance properties of a system; obviously, performance should

also be robust against modelling error. It may be shown [DWS82] that the ro-

bust performance problem is equivalent to one of stability robustness with an

additional source of uncertainty that represents the performance specification.

Hence, robust performance problems reduce to problems of stability robustness

with respect to several sources of uncertainty, and the deficiencies of singular

value analysis described above also apply to the analysis of robust performance.

To address the limitations of singular value analysis, Doyle ([Doy82], [DWS82])

introduced the structured singular value, an analysis tool that directly addresses

the problem of stability robustness against several sources of modelling uncer-

tainty, and thus also addresses the robust performance problem. Essentially,

the structured singular value provides a precise stability mardn against several

simultaneous sources of modelling error.

With the aid of singular value and structured singular value analysis, several

methodologies for the design of robust multivariable feedback systems have been

proposed. Among these are LQG/LTR ([DoS81], [StA87]), HI optimization

[Fra87], and structured singular value synthesis [Doy85]. At present, each of these

methodologies suffers from at least one shortcoming. For example, the LQG/LTR

methodology is applicable only to robustness problems with one source of mod-

elling error. This shortcoming is overcome by the structured singular value syn-

thesis methodology; however, the latter methodology is experimental and tends
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to generate exceedingly high order compensators.

It seems clear that additional insights into the properties of multivariable

systems with several sources of uncertainty will be needed before a completely

satisfactory design methodology can be developed. In particular, multivariable

systems can possess robustness difficulties having no analogue in their scalar

counterparts. For example, it has been observed by several researchers ([Ste84],

ISte,85, [Ste87], !Doy87], [NeM 87, [SMD881, [Freo8aJ, Fre89b]) that systems with

ill-conditioned plants can cause robustness difficulties when modelling error is

present at more than one loop location. ll-conditioned plants arise in fields as

diverse as aircraft control [Enn87] and chemical process control [SMDSS. From

a systems viewpoint, il-conditioning at a frequency means that the gain of the

plant exhibits a strong directional dependence; i.e., certain input sinusoids at

a frequency for which the plant is ill-conditioned will be amplified much more

than will others. A thorough understanding of robustness problems caused by

plant ill-conditioning is not yet available, nor is a design methodology capable of

coping with these difficulties.

The work performed under this contract represents substantial progress to-

ward understanding the robustness properties of multivariable systems with sev-

eral sources of uncertainty, and toward design problems associated with an ill-

conditioned plant. The springboard for the present work is provided by the

results of [Fre89a, and [Fre89b]. To summarize these results briefly, the stabil-

ity robustness problem with two sources of uncertainty is analysed to determine

when a system that is robust against each source of modelling error (assuming

that the other is not present) can nevertheless be destabilized by small simul-
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taneous modelling errors. These results are then applied to the ill-conditioned

plant problem. A sensitivity analysis is performed to detect small modelling

errors that strongly affect system stability robustness and performance. These

modelling errors are then used to derive bounds upon the stability robustness
margin, as quantified by the structured singular value. The significance of these

bounds is that they express the interrelation among the plant directionality prop-

erties, the design specifications, and the compensator. This information suggests

a strategy for compensator design to achieve robust performance and stability

despite plant ill-conditioning.

The research described in this report contributes to the understanding of

multivariable robustness problems in several ways. Our overall approach is sum-

marised as follows. We shall study robustnes problems that may be analysed

using the Doyle's structured singular value (SSV). Because calculation of the

SSV involves numerical optimization procedures, it is difficult to obtain insight

into the relation between its size and the plant, compensator, and design spec-

ifications. Such insight is useful for several reasons. First, one would like to

identify combinations of plant properties and design specifications that are in-

herently difficult to satisfy. Second, one would like to have the capability to

manipulate feedback properties, such as robustness and performance, by modify-

ing the compensator. Our approach to obtaining such insight is to derive bounds

and approximations to the SSV. To be useful, these bounds and approximations

must be both reasonably accurate, and should also display the dependence of

the SSV upon plant, compensator, and design specifications. Once such bounds

and approximations have been derived, they are then analyzed to provide insight
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into fundamental design limitations, and to suggest compensation strategies. In

particular, we incorporate the information gleaned from the bounds into a se-

lection procedure for the weightings used in LQG/LTR, HOO, and H 2 synthesis

procedures.

The remainder of this report is outlined as follows. In Chapter 2 we shall

derive bounds upon the SSV for robustness problems with two or three sources

of uncertainty. The bounds with two sources of uncertainty improve those ap-

pearing in [Fre89a], and [Fre89bJ, while those with three sources of uncertainty

are new. In Chapter 3, we analyze a specific robustness problem, that of output

performance with respect to input uncertainty which is diagonal or block diago-

nal. Using a sensitivity analysis, as well as the bounds from Chapter 2 for three

sources of uncertainty, we study the design difficulties posed by an ill-conditioned

plant for such a robustness problem. In Chapter 4 we develop a framework for

analyzing robustness with respect to several sources of uncertainty. We identify

certain interaction parameters, whose size determines the extent to which inter-

actions among several modelling errors can cause robustness difficulty, and use

these parameters to derive bounds upon the SSV. Chapters 5 and 6 are devoted

to methods of incorporating insights obtained from our analyses into the HOO

and LQG/LTR design methodologies. Chapter 7 contains directions for further

research.

5



Chapter 2

Bounds on the Structured
Singular Value with Two or
Three Sources of Uncertainty

2.1 Introduction

The purpose of this chapter is to present bounds upon the structured singular

value (SSV) with two or three sources of uncertainty. For two sources of uncer-

tainty, our bounds improve those in [FreS~ga and [FreSgb. For three sources of

uncertainty, our bounds can be shown to improve those of Demmel [Dem88]. Ap-

plications of our bounds to specific classes of robustness problems will be found

in Chapter 3 of this report.

The remainder of this chapter is organized as follows. Section 2.2 briefly

reviews the structured singular value and its properties. Section 2.3 contains our

main results, including both lower and upper bounds upon the 3-block structured

singular value. Then bounds are expressed in terms of a set of interaction

parameters that essentially determine how several uncertainties can interact to

6



cause robustness difficulties. The research described in this chapter in discussed

in [ChFfflcJ.

2.2 Properties of the Structured Singular Value

We shall now briefly review those properties of the structured singular value used

in this chapter; a complete discussion and examples ae found in [Doy82]. The

first step in the structured singular value analysis is to rearange the block dia-

gram,.T the feedback system into the form shown in Figure 2.1. The uncertainty

maItix A(s) is assumed to Hie in the set

A ={A(a) : A(s) = diag(A(), &2(s),.. ,A1 e) A4 E C1 'IxkI anedeta~e)

(2.2.1)

It is often convenient to asum that system uncertainties have been scaled to

satisfy the upper bound V(A4(jW)J :5 -, VW, Ws, and to introduce the set A.,=

{ A(.): A(s) E A and #[A(jw)] 5 %y Vw ). The itroncion matrix

M(s) = [M~1(s)] i~j = 1,2,. ...,9k, M41(s) E Ckxj(2.2.2)

is stable if the feedback system is nominally stable. At each fr-equency, the

structured singular value, denoted p[MJ, is defined' by [DoyS2J, [DWS82J)l

0O dd[1+ MAI 960VA E A
11/(MinAEA0u[AI : det[I + MAI = 0)) Owes

(2.2.3)
1Thronghimt th" note, we suppress dqendence upo frgquncy whommv appropriste.
2By a =il abuse of notation, the symbol A wil occamioafl be used to denote the sat of

constant complex miluces with block diagonal structure (2.2.1).
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Mx (s)

Figure 2.1: Block Diagram for Structured Singular Value Anabys
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Hence, by definition, the reciprocal of the structured singular value in a fie-

quency dependent stability margin with respect to uncertainty of the form (2.2.1),9

and a nominally stable feedback system will be robustly stable against all uncer.

tainty in the set A., if and only if p[M(jw)j < 1/-19 VW.

The value of pfMdj can be calculated as follows. Define the set

D={diagdlh, dIh., --- ,dbIh,&I: di E Rjdi >0) (2.2.4)

where Ih, denotes the identity matrix of dimnension kj. It was shown in [lDay82]
that

pIMI < in [DMIY 1J (2.2.5)

In particular, the upper bound WnDED VIDMD-1I is equal to ;&[M] when the

system has three or fewer blocks of uncertainty, namely, 1k <53. This fact may

be used to derive bounds upon the structured singular value.

2.3 Lower and Upper Bounds of p4MJ

In this section we present both lower and upper bounds on the 3-block structured

singular value. For convenience, we shall first denote ori = O[Mtij), and introduce

the following parameters that will be used subsequently in deriving the bounds.

ps(,k) =(vrjjajvr)1 Vi #6 # k
Al =&1 maid0 (2.3.1)
Al, =maxd il j)
A M&= i m Axgyhpitk)

Interpretations of these parameters, which we shall term 9nteractlon parame-

ters,* will become available as we develop bounds upon the structured singular

9



value. For motivation, let us postulate an analysis procedure wherein we test

robustness against uncertainties taken first one at a time, then two at a time

and finally all three at a time. We wish, In particular, to understand when two

(or three) uncertainties can interact to cause robustness difficulties even though

robustness is good with respect to uncertainties taken one (or two) at a time.

It is well-known that the stability margin against Aj alone is equal to 1/au (

[DWS82]. Hence the parameter/;I measures stability robustness against the un-

certainties taken one at a time. Suppose next that we consider the effects of

uncertainties taken two at a time. With no Ioa of generality, we may study this

problem by setting k = 2 in (2.2.1-2).

Proposition 2.3.1 Let k = 2 in (5.1-), and .uppee that the infimum in

(8..5) i8 achieved. Then

M ( A,, 0, : _i,a 4] _ 1&1 + I, (2J.2)

Proof: In order to prove the lower bound, we note that p[M ] = 5[bMb - 1] for

some b) = diag[dji,,di,] E D. It then follows that p[MJd 2! (d 1/dj)rq1 , i,j.

Hence [,[M __ u , ad p2([j _ (d,/dj)a.(d,/d), = p2(i ,), thus establSh

the lower bound. The proof for the upper bound is found in [Fre89a.

Remark 2.3.1: The upper bound in (2.3.2) first appeared in [FreSga], and

the lower bound is a tighter version of that in [FreS9aJ. The statement and

derivation of the improved lower bound are due to C. N. Nett (personal commu-

nication). The proof of this improved bound is significantly simpler than that of

10



the bound in [freB], although the proof in [frSa] is conceptually appealing

in that it provides the set of smallest d-stab'ising uncertainties.

Obviously, Proposition 2.3.1 can be extended to analyse the effects of any

two uncertainties in the general k-block structured singular value problem The

parameter p(ij) essentially determines how the uncertainties Aj and Aj can in-

teract to produce robustness difficulties; hence motivating the terminology inter-

action parameter. Note in particular that a stable system whose interconnection

matrix has the form M(s)= [ 0 MU)] cannot be destabilized by either

uncertainty acting alone; as pointed out in [Fre89a] and [NeU88[, s[M = p2 in

this came.

We now extend this result to the 3-block structured singular value problem.

Using Nett's technique to extend the lower bound in (2.3.2) I straishtforward

Proposition 2.8.2 Let k = 3 in (1.1.1,1), and euppoe that the invfuum in

(1.,.5) is achieve Then,

[M] > maz 0&1,, its (2.3.3)

Proof: It suffices to show /[M] > p. Following the same reasoning as in the
proof of Proposition 3.1 leads to p'[M] > (d/dj)ugj. (dj/da)ja . (d1/,)o j , for

some di, dj, and d4. Thus, ;'[M] > ps(ijk), Vi 6 j 6 k. ,,

Remark 2.3.2: Note that this proof technique consists of finding a lower bound

upon infDED [DMD-1j, and may be extended to derive similar lower bounds

upon this quantity for the case of k > 3. Of course, this technique results in a

11



lower bound upon gi[MI only if the upper bound in (2.2.5) is an equality, and this

is guaranteed only for k = 2,3. Most algorithms (e. g., see [FaTS6], [FTSSJ)

for computing the structured singular value actually compute this upper bound,

which Doyle has cozjectured is within 15% of the true value of &[M] ([DoyS2],

[DLPS6]). Hence, if Doyle's conjecture is correct, one might argue that extensions

of Proposition 2.3.2 to k > 3 remain useful.

Remark 2.3.3: Alternately, one can also apply the techniques of [FreM8] for

the case k = 2 to derive lower bounds for k > 3. As in the case k = 2, the lower

bound obtained in this way is not as sharp as (2.3.2). However, the technique is

in principle generalisable to obtain lower bounds for arbitrary k.

Next, we present upper bounds upon ja[M]. Toward this end, it is necessary

to consider two cases.

Proposition 2.3.3 Let k = 3 in (1.1.1,,).

(a) Suppoee ps > 0. Then

&[M] < pA + A + (2.3.4)

If < ps 1, then

1[M <- $& + 14 + A (2.3.5)

(b) Suppose pf > 0. Then

pu[M] : is + 14 + V3- max 1p ~/2) (2.3.6)

If;ft/pr > 1, then

A[M] < JI + (I + v3i)A, (2..7)

12



Proof of (a): With no loew of generality, we mume ps = p(1, 2, 3). Our proof pro-

ceeds with the decomposition M = Mo+M 1+M,, where M = diag[Mli, Mn, Mul,

0 M12  010 0 Mi1
S 0 0 2 M 0 0 (2.3.8)

M31 0 Ma 0

Note first that

A = inf V[DM 1D-1 1
Dol

didg.ds -oI , 2 i

The solution to this minimization problem is obtained by setting 1 = 1, 2 =

012/01,2,), I = j&(1, 2 ,3)/qgi, leading to ps = p(l, 2 ,3). Next, notice that

,[M] _ i f [DMD-11 __ i, + ,[bMjb-1] + u,[bM2b- J

where

pp fiM 2Lr 1 o = ax 4+13, C M + ,w1

{ n pl(1,2) p2(29,3) 1p2(193)

This prome (2.3.4), and (2.3.5) 1m d1tl follows.

Proof of (b): Without lIos of generality, we assume that pa = p(1,2). Our

proof proceeds with the decomposition M =Mo + Ms + M4, where Mo

dsag[Mu, M22, MU],
0 M12 0 0 0 MIS,

M [a M M 0] and M4= 0 0 M
o 0 01 M31 Mn 0

13



Clearly, p[M _< p, + infDep {5jDMsD-1] + a[DM4D-1 ] }. Setting 11 = 1, J, 

0 12/12 yields

[M < i, + 12+ nf [DM4D-1j

To solve the minimization problem in the right hand side, note that

inf [DM4D-'] = inf maz I d&[M8., (1/J,)M.], 16 [ M's

< inf mat (d~u +.,W 21J)o,(/s~~~

The last minimization problem has the solution is = [(01 + 4 )/(2 +

(1/J,)3 2 )]1/4. Substituting the Value of J2 yields

[bM' p,( 2,13) (1,,2) 1/4

.b-11 _ 0'(293) + '(1.3) + -- w-- + ; -I

-[(p(293) - $0(113)) 3 + (~(~~)+ A3~s 2) 1 1/4

* 42 + (24) 

= / 

1/4

* pj+2A'

This proves (2.3.6), and (2.3.7) follows immeditely. m

Just as the parameter pg measrm how the effects of two uncertainties can

interact to cause robustness difficulties, so does 14 measure the problems caused

by interactions among all three uncertainties. Indeed, suppose that the system

interconnection matrix has the form of M1(s), or M2(a), defined as in (2.3.8).

Since P1 =/p = 0, neither of thme "stemu can be destabilized by uncertainties

acting individually or in pairs. However, each system can be destabilized by
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a combination of Al, A2, and As. The following corollary is an immeaite

consequence of (2.3.3) and (2.3.4).

Coro ary 2.3.4 Lt M, od M2 bs dfif =, in (S..O). TMn,

p[MiJ = p(1,2, 3) (2.3.9)

(b)

p[M,] = p(1,392) (2.3.10)

Hence the first upper bound (2.3.4) is useful in the case that the most significant

difficulty in due to the interaction of all three uncertainties, while the second

upper bound (2.3.6) is useful in the cae that the most significant difficulty is

due to the interaction of just two of the uncertainties. An interesting open

problem in whether a single upper bound exists which in useful in both cases and

is not prohibitively messy.

2.4 Concluding Remarks

In this chapter we have derived both lower and upper bounds upon the struc-

tured singular value with respect to three blocks of uncertainty. Our bounds are

expressed in terms of a set of parametern that determine how two or three un-

certainties can interact to cause robustness difficulties. These bounds appear to

give reasonably tight estimates of the structured singular value. Specifically, the

upper bounds were shown to be within a factor of three of the lower bound on

one occasion, while within a factor of 2 + vS (w 3.73) on the other. It is interest-



ing to note that our bounds are substantially tighter, and have more interesting

interpretations, than those developed in [Dem88].

More importantly, our bounds may be used to study various robustness analy-

sis and design problems. In applying these bounds, we found that the blocks M ,

of the interconnection matrix will be mutually interrelated, and, as in [Fre89sa,

it in important to analyze this interrelation to obtain design insight.

We conclude this chapter by pointing out the potential extensions of these

bounds to the k-block structured singular value, with k > 3. Many of the present

results can be extended; however, the technique used to derive the lower bounds

may not. The major obstacle in achieving this, of course, is the invalidity of the

equality ;[M] = infDep [DMD - 1] in the general case.
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Chapter 3

Robust Performance with
Respect to Diagonal Input
Uncertainty

3.1 Introduction

In this chapter we shall apply the results of Chapter 2 to a specific class of

robust performance problems. For motivation, consider the problem of main-

taming the output sensitivity function small, to achieve disturbance attenuation,

despite the presence of unstructured multiplicative uncertainty at the plant in-

put. Analysis of this problem has exposed potential design difficulties when the

plant transfer function matrix is ill-conditioned at frequencies near crossover. By

11-conditioned," we mean that the gain of the plant, at a frequency of interest,

exhibits a strong directional dependence: some input signals will be amplified

much more than will others. Although no conclusive proof has yet appeared,

anecdotal evidence sugests that ill-conditioned plants may be inherently dif-

ficult to robustly control, at least for certain types of plant uncertainty, and

17



that the size of the plant condition number i an indicator of the degree of the

difficulty in achieving robustness [Fre89aJ, [FreSgbj, [NeMB7I, [SMDS8, [SteS5],

[SteST7, [SkM8V].

The tentative conclusion that an ill-conditioned plant is inherently difficult

to robustly control depends critically upon the assumption that the input uncer-

tainty is unatructure4 and can therefore introduce coupling among different plant

inputs. Often, however, physical considerations dictate that it is more reasonable

to assume that uncertainty cannot introduce such coupling, or can introduce cou-

pling only among a subset of the inputs. Examples arise in diverse applications,

such as process control [SkM87], [SMD88] and aircraft control [Enn87]. This

property is modelled mathematically by assuming that the input uncertainty has

a diagonal or block diagonal structure. In (SMD88, it is demonstrated via ex-

amples that ill-conditioned plants can sometimes cause design difficulties when

input uncertainty is constrained to be diagonal (i.e., to introduce no coupling

between inputs), but that sometimes no such difficulty is encountered. Appeal-

ing physical explanations of this phenomenon are presented in [SMDSS], and the

extent of the potential robustness difficulty depends upon the input directional-

ity properties of the plant, as well as its condition number. It is also remarked

[SkM87] that the plant relative gain array may be a useful indicator of potential

robustness difficulty for this problem. The analysis in [SkMS7], [SMD88j focuses

in particular upon robustness difficulties that can be encountered through use of

a compensator that explicitly inverts the plant model.

Our purpose in this chapter is to provide a framework useful for analysing the

degree of difficulty inherent in the robust performance problem when the input

18



uncertainty is modelled as a diagonal or block diagonal matrix. An outline of

our results follows. In Section 3.2, we introduce notation and define the robust

performance problem of maintaining the output sensitivity function small despite

the presence of block diagonal uncertainty at the plant input. Section 3.3 con-

tains initial results: we calculate the first- and second-order effects of the input

uncertainty upon the output sensitivity function, and point out conditions on the

closed-loop shapes which must be satisfied if these effects are to be kept small. In

Section 3.4, we review the use of the structured singular value [Doy82] as a test

for robust performance. Since the interrelation among the plant, compensator,

uncertainty structure, and size of the structured singular value is rather compli-

cated, we use the frequency dependent bounds upon the structured singular value

derived in Chapter 2 to provide useful insights into this interrelation. These

bounds are stated in terms of interaction parameter.; keeping these parameters

small is approximately equivalent to satisfying the goal of robust performance.

Furthermore, the interaction parameters are very closely related to the first-

and second-order effects of input uncertainty that were calculated in Section 3.3.

Next, in Section 3.5, we analyze the problem of keeping the interaction parame-

ters small, and show that the difficulty of this problem depends upon a robustnes

indicator which is a function of both the plant condition number and its input

directionality properties. In Section 3.6, we briefly discuss and compare the rel-

ative gain array to our new robustness indicator. Examples are given in Section

3.7, and concluding remarks are made in Section 3.8. The research described in

this chapter is discussed in [ChF89a].
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3.2 The Robust Performance Problem

Consider the linear time-invariant feedback system depicted in Figure 3.1. The

transfer functions P(s) and F(s) are those of the plant model and compenator,

respectively. We shall assume I that the plant has n inputs and outputs, and

that detP(,) # 0. The signals r(a), d(e), and V(s) ae the reference input,

disturbance input, and system output, respectively. Define the input open-loop

trawfer function, sensitivity function, and complementary esfitiviity functiom

L(s) = F(s)P(), S,(a) = [I + L,(s)]-' Tr(s) = Lz()[I + L()]-' (3.2.1)

and the output open-loop tranefer function, senititvity function, and complemen-

tary sensitivity function:

Lo(8) = P(@)F(9), So(9) = [I + Lo(8)]-', To() = o(a)[I + Lo(8)1- 1 (3.2.2)

The following notation will be used. Let RH** denote the set of proper

rational matrices that are stable, i.e. that have no poles in the closed right half

plane. Given G(s) E RH, define IIGII- = sup. [G(jw)], where &[.] denotes

the largest singular value of a matrix [GoV83]. Define also the set

Dv = {G(s) E RH' : IIGII. < v) (3.2.3)

When we refer to a matrix in D., the dimensions will be clear from the context.

Finally, we suppress dependence upon frequency whenever convenient.

'Our reomlta exted to nonoquare plaits that aatify the relvt amumption d lft or right
bmvetlbility.



dy (s)

Figure 3.1: Feedback Configuration
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We now describe the design specifications that our system 6 to satisfy. Sup-

pose that the true plant is given by

P(s) = P(s)[I + Rg(a)A1 (e)j (3.2.4)

The matrix Az(.) may lie anywhere In a set of form

All =diag[AI9 A21]: AI E Ckxk, A2 C C(=3k)x(x3k), At E Dyl i = 1, 2)

(3.2.5)

where 0 < k < n. We say that each Ai is an unstructured uncertainty. The

matrix RI(s) = diag[r(s)Ih,, r2(a)I,J is dimensioned compatibly with Az(e)

(I, and I._. are identity matrices). The weighting functions ri(s) and r,(.)

are chosen to be stable and to have stable inverses, and are used to model the

frequency dependence of the level of uncertainty.

Our first design goals are to achieve nomial internal stability (cf. [Vid85],

Section 5.1) and to maintain stability robust against the uncertainty described

by (3.2.4). Using standard argument. (eg., see [DoSS1], [DWS82]), it is straight-

forward to show that stability will be robust against arbitrary Aj E D, alone

(i.e., with Aj = O. i) if and only if

HIFI~ ill. < 1/-y (3..6)

where A1  [k ] 9E2 = [02 Assesing stability robustnesagainst both

uncertatie simltnily requir use of the structured singular value [Doy82],

and will be deferred until Section 3.4.

We also wish to satisfy the nominal performance goal of reducing the effect of

the disturbance input upon the system output. We say that this goal is achieved
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if

IaSoll. < 1 (3.2.7)

where ri(a) is a weighting function whose sis indicates the relative Importance

of disturbance reduction at each frequency. Next, we demand that performance

be robust against uncertainty. Heace, for a given 7, we require that

IfraSA110 < 1, VA1  A, (3.2.8)

where So = [I+ PF]-1.

We shall need to use the singulsr value deeompoition [GoVS3] of the plant to

describe its directionality properties; for a detailed discussion, se e.g., [rL6],

[FreSMa, and [F'reO]. Let the singular value decomposition of the plant trans-

fer function, evaluated at a fixed frequency, be denoted P = WTZ', where

T = diag[ri, r29 * * *, r.]J, W = [W19 W29 ,' * 9 W.1,, and Z = [S19 X29 *. "s XJ. The

diagonal elements of T re termed the singular values of P, and an ordered

so that u[P] = >! rs > ... > rn = w[P] > 0. The columns of the unitary

matrices W and Z are termed the left and right singular vectors, respectively.

The largest and smallest singular values of P(jw) have interpretations as the

largest and smallest possible gains at frequency w. The condition number of the

plant is defined as [P] = &[P]/fP]. f the condition number is very large at a

frequency, then the gain of the system is strongly directional at that frequency,

and the plant is said to be i/-cond'tioned [GoVS3J.

It will prove convenient to adopt the following notation. Consider a matrix

whose columns form an orthonormal basis for a k-dimensional subspace of CP.

We denote the matrix by an uppercase letter (or a lowercase letter in the case
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k = 1), and the assocated subepace by the boldface version of the ume letter

(e.g., the columns of X E Chxk form an orthonormal basis for the h-dimensional

1uhpce Xc CZ).

Finally, we need to define a specific clas of compensators which we shall term

pkant-invertng compensatora. Such compensators were discussed in [Fre9b],

[Fre@o], [SkM87J, and are useful in revealing design difficulties associated with

ill-conditioned plants. A plant-inverting compensator F(a) is of the form

F(s) = 1(,)P-(a) (3.2.9)

where 1(s) is a scalar trander function selected so that F(s) is proper. Obviously,

use of a plant-inverting compensator requires that the plant be stable and have

a stable inverse. For later reference, note that with such a compensator the

two sets of transfer functions (3.2.1-2) are identical. We shall denote these by

Lo(a) = L,(a) = /(,)I, So(,) = SI(o) = s(j)I, and To(s) = T1(o) = t(.)I, whe

a(s) = 1/(1 + 1(s)) and t(,) = l(a)/(1 + 1(a)).

3.3 First- and Second-Order Effects of Input
Uncertainty upon Output Sensitivity

The robust performance problem posed in the preceding section requires that the

output sensitivity function be kept small despite the presence of block diagonal

uncertainty at the plant input. In this section we shall study this problem by

investigating the first- and second-order effects of input uncertainty upon output

sensitivity. As we shall show in Section 3.4, an understanding of only the first-

and second-order effects is sufficient to allow development of qualitative design
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rules for this robust performnce problem.

Lemma 3.3.1 Aoume tAt P' has 9h form defined in (T.h.-4). S',-

[I + P'P]-' has th form S =Sos + SO + o (), wise,,

so = -SoPRjArP-To (3.3.1)

and

S2 = SoPRjIArTRIA,-'To (3.3.2)

U

Proof: The proof follows from straightforwar maipulstios s in the proof

of Lemma 4 of [Fr69Jt.

Lemma 3.3.1 allows an approximate decomposition of SO into the sum of the

seroth orde term So, frint orde term So, and second order term SO. Achiving

robust performance requires that So and S0 be kept small Let us Initially

consider the first order elects.

Proposltiom 3.3.2 Stppoe that A, E Ay. Then

sup &[SAI _ ,E I rd I[SoPeV[Bde-'To] (3.3.3)
AEAr i=1

and

sup &[SA] > ymx I r, I v[SoPEa[EOP-'To] (3.3.4)
AEA-,

Proof: The upper bound follow. by noting that 0

Sol= -, SoPE, 1E,'P-To - rISoP-,ASEfP-1 To (3.3.5)
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and applying the triangle inequality. The lower bound follows fzmi (3.3.5) by

noting that

sup s[S] ,up &[sol]
A'reA.j A'F-A, , A$iO

and constructing a worst cue" A, as in the proof of Lemma 3, [FreSlaJ.

It is clear that the terms2 I ri I (SoPFA]&[E'P-To characterise the first

order effects of uncertainty at the plant input upon the output sensitivity func-

tion. Hence, to chieve robust performance, it i necessary that keeping these

terms small be made a design objective.

The remainder of this section is devoted to exploring the second order effects

of input uncertainty upon the output sensitivity function.

Proposition 3.3.3 Suppoae that A, E A,. Then
2 2

sup a[s0J < :' 5 rjrj I [SoPEJ]E T,j]o[ej -' To ] (3.3.6)
AzeA., Jul im1

Proof: The proof follows from noting that

S = SoP1 AlBE ,1 &1 ElP 1

+ rirgSoPE AiE T, EBAaEfnP-1 To (3.3.7)

+ r2rISoPEA,&g'TBE1 le- 'P-TO

+ r2SOPB2'A2E2'TrE2A 2Ef P1 To
2n Sect=on 3.4, we sha show tha then to=i, as well- tho di led foowing Propwdiam

3.8.3, ae dos* reaed to our intmsedon p:Mrmter..
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and applying the triangle inequality.

Proposition 3.3.3 shown that the second order effcts ae characterised by the

terms Ir 1 I [SoPE I[Ea f TIEo[iTP-'To]. Hence keeping these terms small

should also be Included as a design objective. In this regard, we notice that

the first and fourth terms in (3.3.7) will tend to be small if the robust stability

bounds (3.2.6) are satisfied and if the first-order effects of uncertainty are small.

Analysis of the second and third terms in (3.3.7) is more problematic, and we

shall return to this point at the close of Section 3.4.

It is straightforward to extend the results of this section to analyse the first-

and second-order effects of input uncertainty modelled as an m x m block diagonal

matrix.

8.4 Structured Singular Value Analysis of the
Robust Performance Problem

The first step in applying structured singular value analysis is to formulate

the robust performanc problem as an equivalent robust stability problem by

introducing a fictitious modelling uncertainty to represent the performance spec-

ification [DWS82]. For our problem, this is accomplished by supposing that the

true plant is given by

P[) = [I + rs(e)As(s)]-P(a)[I + Rr(e)A,(a)] (3.4.1)
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where the input uncertainty in the same as in (32.3-5), As(a) is stable, and the

weighting function ra(.) is identical with that in (3.2.7). As discussed in [DoyS2j,

[DWS82], the next step is to define

A = diag[A,, A,, As] (3.4.2)

and
and[rEI'TzE 1  r1EI'TgE -riElP-1 TO1

M = r,,E2TzE, rB'TE2, -r, P-'To (3.4.3)
-r3SoPE -rSSoPP4 rsSo

By definition [DoyS2], the structured singular value, denoted I[M(jw)J, in the

reciprocal of a frequency dependent stability margin with respect to all three

sources of uncertainty. Define ;.[M] = supp [M(jw)]. A nominally stable

feedback system will be robustly stable against all uncertainties of the form

(3.4.2) with 4 an arbitrary member of D., if and only if p1 .[M] < 1/7. In terms

of the original robust performance problem, we have that IrsSbI11. < 1/,y for all

Az E A4 if and only if p.o[M] < 1/,y [DWS82]. For the rest of this section, we

will discuss only the equivalent robust stability problem.

To obtain insight into the robust stability problem, we will work with a set

of frequency dependent bounds upon the structured singular value. To simplify

notation, we denote the block elements of M by Mj, and define

,j= (3.4.4)

and

= max (3.4.5)

Hence the system is robustly stable against the uncertainty Ad alone if and only

if u"(jW) < 1/-Y, VW.
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Next, we define the intersctin psrmeter. (cf. Chapter 2)

(i,j) =- , WVi#J (3.4.6)

p(isjik) - (wf u, )1I,, Vi #3 j k (3.4.7)

10 = mA(ij) (3.4.8)

p = maxp(i,j,k) (3.4.9)

The interaction parameter p(j) determines to what extent the effects of the

two uncertainties A and A1 can interact to produce robustness difilcultim. The

robust stability problem obtained by setting A& =0 can be studied using struc-

tured singular value techniques applied to the matrix obtained by deleting the

kth block row and column of M. Denote this matrix by Mij~. The following

result is an immediate corollary to Proposition 2.3.1.

Proposltion 8.4.1 Chote i 6 j $ k. Then

"M{ ,, oo, k(i,j) } <_ p[MIiJ] :5 Mz { ou, On } + A(Sj) (3.4.10)

For our problem, the interaction parameters in (3.4.6) are

p(1, 2) = /[rEFT, n1&r,, fTrij] (3.4.11)

p(1, 3) = VlIraSoPEj, lrU sre-f7o] (3.4.12)

p(2, 3) = V&[rnSoP,]#[,rre-1Toj (3.4.13)

To illustrate, let us return to the problem of robust stability against block di-

agonal uncertainty at the plant input. Recall that the system is robustly stable

aganstAjalone (i = 1, 2) if and only if (3.2.6) atisfied. The system will be
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robustly stable against AI and A2 together if and only if o.[Mi1,2] < 1/1. It

follows from Proposition 3.4.1 that, in addition to keeping the diagonal blocks of

T small, it is also necessary to keep the product of the off-diagonal blocks small.

The latter requirement is to prevent destabilizing interactions between A, and

A2.

The interaction parameters p(1,3) and p(2,3) each have an analogous inter-

pretation. Suppose that stability is robust with respect to A, and As individu-

ally. Then, to maintain robust stability against the combined effects of these two

uncertainties, it is necessary and sufficient that p(1,3) be kept small. An inspec-

tion of Proposition 3.3.2 reveals that this requirement is equivalent to keeping

the first order effects of A, upon output sensitivity small. Similar comments

apply to the combined effects of AS and As.

We next consider the combined effects of all three uncertainties. The following

proposition is a restatement of Propositions 2.3.2 and 2.3.3, combined here for

convenience.

Proposition 3.4.2 Consider i1, Ps, and p defined in (3-4.4-9). Then

(i)
#[M/] : maz ( is,,,2, (3.4.14)

(ii) Suppose that ps 0. If p / s < 1, then

lm /i + As + # (3.4.15)

(iii) Suppose s2 6 0. I pa/#s ( 1, then

;[M] _< pi + 2.74ps (3.4.16)
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For later refrence, we note that for our problem,

p(1,2,3) = (VfrieiTEs1#fraSOPE1fr2e 2 P-lTo)1" (3.4.17)

and

&(1,3,2) = (#[r 2ETi ,EI[,rSoP.,]1[re P-'To])ll' (3.4.18)

From an inspection of Proposition 3.3.3 and the ensuing discussion, it follows

that keeping is,, p and ps small is equivalent to keeping the seroth-, first-, and

second-order effects of input uncertainty upon output sensitivity small. Note in

particular that &(1,2,3) and p(1,3,2) correspond to the second and third terms

in (3.3.7). This shows that the essentials of the robust performance problem are

captured by our analysis of the first- and second-order effects of input uncertainty

upon the output sensitivity function.

3.5 A Robustness Indicator

In the previous section we have defined interaction parameters that must be kept

small if performance is to be robust. We now derive a robu tn indicator whose

ine determines the potential difficulty of this task. To simplify the exposition,

it will prove convenient to assume that the singular value decomposition of the

plant may be partitioned as

P = WIiz,1Z r + W2T 2z' (3.5.1)
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where TI = diq[Trir2, -*, 9, 1 T2 = dia9[V+I, 142, * v,], Wi, Zi E C=m, and

W2 , Z2 E Cax(n- 1). We shall further assmn that q > k+,, and refer to the plant

as consisting of "high and low gain subsystems [FrL86] with input directions

Z, and output directions W1. Finally, we shall sume that the gain in each

subsystem is uniform: ri = , and n+1 = r.. If any of the above assumptions fail

to hold, analysis may be performed using the dyadic form of the plant singular

value decomposition, and steps toward accomplishing this will be indicated in

the sequel.

We next need to describe how well the plant input directions are aligned with

the two blocks of uncertainty. We do this by introducing an angular measure

of the distance between the subspaces ZI containin the inputs to the high- and

low-gain subsystems of the plant and the subspaces E containing the inputs to

and outputs from each block of uncertainty. Consider the subepaces Z1 , Z,, F4,

and E2, and let q = min{k, 1}. As discussed in Section 2 of [FrL86j and the

references cited therein, the principal anglee [BjG73], [GoV83] Ik = a, 2! a2 _

S- > c = a E , ir/2], between the subspaces Zi and E are a measure of

the angular distance between these two subspaces, and thus also between their

orthogonal complements Z2 and E2. Then angles have the following useful

characterizations.

Lemma 3.5.1 Co.n-'ider the matriz

E'Z [EfA EfZ A (3.5.2)

Aaaume' that k+l < n. Then there eziet compatibly dimenaioned unitary mariee

solherwie (n - ) + (n - k) < n, and the decomposition may be obtained by renumbering

and replacing k with n - k and I with n - I.
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U = diag[Ut, us] and V = dig[V1, V2 Suh a

(i) if k _ 1, then

C:-SO0 0

o 0 1&-, 0
Ul'ezv = ... ...... ... (3.5.3)

S Co 0
o 0 0 ..I,(+

(ii) ifk< , then

C 0 :-S 0

U' ezv= S 0 : C 0 (3.5.4)

o g-h& 0 0
O 0 0 I.-(h+j)

where C = diag[coe a,, coo a,, ... , coc NJ and S = diag[,in a,, sina, 0.., sin,].

Proof: A strightfor generalization of the C-S Decompoaition of a general

unitary matrix, which is presented in [Ste77], [G6483.

Comparing (3.5.2) with (3.5.3-4), it follow, that the singular values of EjfZ

are equal to the coaine# of the principal angles, while the singular values of Z2

are equal to the sines of the principal angles and (possibly) unity, and so forth.

This proves significant, as It follows from (3.3.1) and (3.5.1) that the first-order

effects of input uncertainty upon the output sensitivity function depend upon

both the plant condition number and the matrices EfZ, Z, j = 1,2. The

following lemma makes this statement precise.

Lemma 3.5.2 Suppos. that the plant is partitioned as. in(5 ). Then, from
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(S.53.1), it o( that

s,= -rSoWiTZi"wEiElZ2 ST;1 W2ffTo

-rgo~i1 ZAE~ZT IW'fTo (3.5.5)

+other terms

Note that the first two terms in this expansion are proportional in sie to the

plant condition number. Hence, if the plant is ill-conditioned, the first-order ef-

fecte in (3.3.1) are potentially large. By the uniform gain assumption, the Gother

terms* in this expansion4 are not proportional to the plant condition number,

and thus are of les significance. Also, this result shows that the extent to which

plant ill-onditionednms can cause design difficulty depends upon the alignment

between the subspaces Es and Z1. To illustrate, consider So as the series con-

nection of SoP, RAj and P-1 To (c.f. (3.3.1)). Potential design difficulties arise

whenever the uncertainty can introduce coupling between the high- (low-) gain

subsystems of P and P- 1 . For example, if k = I = n/2, then no coupling will be

introduced if the alignment is perfect (i.e., a = 0 or a = w/2). Certain combi-

nations of the dimensions k, 1, and n will always result in coupling, regardless of

how the subspaces are aligned. For an example, consider k = 1, 1 = 2, and n = 4.

Also, a limiting case is when k =n, for which the uncertainty is no longer block

diagonal and the analysis reduces to that of [Fre89a]. The potential robustness

difficulties arising from these and other combinations of k, t, and n can be best

summarized by considering the interaction parameters 4(1,3) and p(2,3).

Proposition 3.5.3 Suppose that the partition (5.5.1) and the uniform ain as-
41t is trightfdward to casculsh these terms ephciay. Since the resulting e.resims ae

lengthy, they wre omitted for purpoe of brmit.
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sunton hold, and that k + 15 n. Tsen

#2(1,3) > g[SoWgTojp~jPj (3.5.6)

s(2,3) > g4SoJgjTojp=[PJ (3.5.7)

where

pia[J =Ir~rIO11{ k>1 (3.5.8)Pin.a, k+l<n,

si, k + I < n, k-: I' sso
pul] Ir~r I'CP1cosgsina, k+l=n, k2: (.lp~aPJ= I~r~u~PI ist k+I~n, k<1

os, k+l n, k<1

urthermore, for i = 1, 2,

p2(i. 3) < [SoW,]pWeTojp,[P] + other terms (3.5.10)

Proof: Using standard norm inequalities and the fact that W is a unitary

matrix yields

'(1.v3) 2!1 rrs e4So]gTole[TZ, l e]&[SIZj Z T ]

Setting i = 1, j = 2 and applying the uniform gain assumption give

/'( ,3) 2!1 rlrI, Sol4Top]u[llZ'Eil[E 'Z"],

from which (3.5.6) follows. Proof of (3.5.7) i sinIar. The upper bound (3.5.10)

follows by substituting (3.5.1) into (3.4.12-13) and applying norm properties.
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It follows from (3.5..7) that robustness Is potentially poor at any frequency

for which the robutneu indieator

pIp] _ maxPA[P] (3.5.11)

is large. At such frequencies, it is necessary that the output loop-transfer func-

tion be shaped so that g[So]g4To] is small. Since the 'other term? in (3.5.10)

are not proportional to the plant condition number, it follows that p(i, 3) may be

kept small by requiring the product [(SoW 1IU[WIfTo] to be small. Comparison

with (3.5.5) shows that this strategy is equivalent to keeping the first-order ef-

fects of A, and A2 small. For purpose of comparison with the rsults of (Fre89a],

[Fre89b], [FreO], and [Ste87] we note that the case of untuetwed input uncer-

tainty corresponds to setting k = n in (3.2.5). In this cue the weighting r3 is

irrelevant and a = 0, and hence the robustness indicator assumes a correspond-

ingly simple form

p[P]I 1 rra I jC[P] (3.6.2)

which depends solely upon the plant condition number.

In summary, we have shown that if the robustness indicator (3.5.11) is large,

then performance robustness is potentially poor. The analysis is limited, how-

ever, in that it is based solely upon the interaction parameters ;&(i, 3), and thus

solely upon the first order effects of uncertainty. It remains to be determined

whether performance robustness can be potentially poor because of the second-

order effects of uncertainty, even if the first-order effects are negligible. This

question translates approximately into that of determining whether the interac-

tion parameters p(i,j, k) can be large even if p, and 2 are small. A somewhat
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surprising result, which is applicable to system with two inputs and two outputs,

shows that keeping the interaction parameters is and pn mall tends to Insure

that ps is small as well.

Propositloim 3.5.4 Let n = 2, and letIs1, 14 and ps b defined in (8.4.4-9).
h Then

< 1.2 mix(Is, p} (3.5.13)

Proof: See Appendix A.

Suppose that the goals of nominal performance and robust stability against

diagonal input uncertainty are satisfied, so that is is small. Then it follows

from Propositions 3.4.2 and 3.5.4 that the goal of achieving robust performance

essentially translates into that of keeping pg small. It follows, therefore, that the

robustnem indicator does adequately reflect the potential difliculty of achieving

robust performance. Finally, although it seems reasonable to conjecture that

Proposition 3.5.4 can be extended to the general case of block 2 x 2 uncertainty,

the proof of this proposition does not readily generalize, and the conjecture is

left for future research.

In what follows we shall discuss the robustnm difficulties associated with a

plant-inverting compensator. Note first that the interaction parameter ps = 0 in

this case, so that the discussions following Proposition 3.5.4 ae rendered moot.

To explain these difficulties, we first recall the following result of Stein [Ste67,

who explicitly calculates the structured singular value resulting from use of a

plant-inverting compensator in the case of unetructured uncertainty.

37



Proposition 3.5.5 [steST] Aume that k = n in (..5)and that F() is

given by (5.5.). Then

;O[M] = frAti' + jr3l,' + Iltl, lr°I " (i[P] + 1/K[P]) (3.5.14)

Hence, it follows that, for a fixed loop shape i(a), the structured singular value

will increase as the square root of the robustness indicator (3.5.12).

We next develop a corresponding result for the present problem. For no-

tational simplicity, we consider only the special case k = I = n/2, for which

p[P] = max , jrraj[P] cos aina. Noticing that gs = 0, p(1,2) = 0, the bounds

given in (3.4.14) and (3.4.16) can be utilized. However, stronger result. may be

obtained due to the special structure of the interconnection matrix.

Proposition 3.5.6 A raame that k = I = n/2 in (S.5.5), and that the pwtii

(5.5.1) and the uniform gain auumption hod Let P(s) be given as in (5.19).

Then

InaZ {P91, A1 :5I[AI :5 ;&1+ viIs(.515

where

41 = a (IrItI, Irtl, jr.1} (3.l1)
p= vna (p(1, 3) 9 p(29,3)) (..6

Furthermore,

,'(i,3) >! Itl. Iraal[P]cosasina (3.5.17)

and

#2(i, 3) <5 Intl Irsal (,[P conasina + coos a +sins a + (i/,,[PJ) co.agina )

(3.5.18)
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Proof: See Appendix B.

Hence again, we se that for a fixed loop shape, the structured singular value

will increase with the square root of the robustness indicator (3.5.11). The main

difference is that now the robustnes indicator depends not only upon the plant

condition number, but alo upon the allignmet angles. Motivated by these anal-

yses and those in [SkM87T, it is of particular interest to develop an intuitive

explanation of the design difficulties associated with such a compea . To-

ward this end, note that when the plant has the form (3.5.1), such a compensator

also has a decomposition into high and low gain subsystems. In the absence of

uncertainty, the high (or low) gins of the cancel the low (or high)

pins of the plant ezedy. However, with uncertainty present, this cancellation

will be exact onlyif /the alignment conditions are satisfied (and hence the robust-

new indicators are zero). Otherwise, the uncertainty can cause the high (or low)

gains of the plant and compensator to multiply one another, so that the resulting

series connection of plant, uncertainty, and compensator i significantly different

from its nominal value. Remarks similar to these are presented in [SMD88], and

physical interpretations are presented for robustness problems associated with

high-purity distillation columns. Our results above are appealing in that they

allow these potential difficulties to be quantified in terms of the principal angles.

Finally, if the uniform gain assumption fails to hold, then analysis can pro-

ceed using the dyadic form of the plant singular value decomposition: P -
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E., TrwdIf. Indeed, calculations similar to those in Proposition 3.5.3 yield

p 2 (i, 3) >i ti, I g[So]J[ToJ " (vj/rk) IjI' Bll I isill (3.5.19)

where 11ifEl11 and IIEs1,1 are the coines of the nles between the subspaces

zj and E, and Sk and ]4, respectively. Hence p[P] = max Pa[P], where

IP] = max I rdrl ("I /,)IIZIE4I, i ll.'sill (3.5.20)

i a useful generalization of the robustness indicator to this more general situa-

tion.

3.6 The Relative Gain Array

The Relative Gain Array (RGA) [Bri66] is widely used in the process control

industry to analyse interactions in multivariable systems. A number of authors

have studied robustness difficulties associated with plants having large elements

in the RGA. (For discussions of these results and lists of references, we [NeMS7],

[SkMS71.) Skogestad and Morari [SkM87J have demonstrated that the RGA is

useful as an indicator of potential design difficulty for the problem of maintain-

ing performance robust against diagonal multiplicative uncertainty at the plant

input. In particular, they show that the RGA is a lm conservative indicator

than is the plant condition number for this particular problem. On the other

hand, they also show that the RGA can be optimistic, and can sometimes fail

to detect potential difficulties when the plant has large off-diagonal elements (d

[SkM87]). Our purpose in this section is to compare our robustness indicator

with the RGA, and to show that ours does not suffer from this shortcoming. It
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suffices to consider the came n = 2, and to asum that the weightinp in (3.2.4)

are unity.

For our purpose, the RGA is a matrix

RGA = [ As (3.6.1)

where An = Ai, Al, = An = I- Ali, Ail = I -( ,-) andpj, j=1,2 we

the elements of the plant tranusfer function mat ix. For n = 2, the subspacus Zg

and E1 are one-dimenional and thus will be denoted as sg and el, here 91 and e2

correspond to the vectors ei = [ 1 ]"n 2Terbstesidctri

p[P] = [P] con a sin a (3.6.2)

here a denotes the principal angle between the subspaces st and e. The following

in adapted from [SkM87].

Proposition 3.6.1 Suppose that uncertainty ha. the form of (.1.1) with n =

2, k = 1. Then the output open-loop transfer function can be written as L =

(I + E)PF, where E is an error term:

E = PAIP-1  (3.6.3)

Furthermore,

sup &[E] _ 1 max I Al I I L (3.6.4)
AEA, q PH

Proof: The proof follows from noting tht [SkMS7]

-[ 2 A/pl +A 1 & - (,/,n)( 1&2,- ) (3
, - 11 =A( s+/ )( -,&I) A/ + An. (.6.5)
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It follows from (3.6.4) with i-j that large values of the relative gain I Al1 I

correspond to systems that are very sensitive to uncertainty. However, small

values of I All I need not necessarily correspond to systems that ar insensitive.

Indeed, counterexamples can readily be constructed using a triangular P matrix

whose largest element is on the off-diagonal (e.g., p. 2328, [SkM87]).

Expressing the plant output with respect to the basis consisting of the left

singular vectors of the plant displays the role played by the condition number

and input directionality properties of the plant.

ProposItion 8.6.2 Comider the error term (3.6.3):

sup OrE] > 'ymax(r/T 1 ) I e e I. I ei'si I (3.6.6)

AeA., djk

and

sup OIE] < 4- max(r/rh) I e, I. I e (3.6.7)

Proof: The proof follows by applying norm properties to the error term [EI,

and noting that &[E] - a[WHEW], where

WK~ ~ (1M[J ELI 4N A e ui [P Ej.1 4ed~AM99368

In particular, it follows from (3.6.2) and (3.6.6) that

sup OIEI > 'Y[P] (3.6.9)

AEA4
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Finally, the upper bound (3.6.7) shown that the error term cannot be significantly

larger than &[All if the robustness indicator is small

3.7 Examples

The authors of [SMDS8] illustrated the design difficulties of ill-conditioned plants

using simplified models of the LV and DV configurations of a distillation column.

Both configurations result in an ll-conditioned plant, and both display robustness

problems when a plant-inverting compensator is used and the input uncertainty

is assumed to be unstructwred. If, however, the input uncertainty is assumed to

be diagonal, then only the LV-configurstion continues to pose robustness prob-

lems when a plant-inverting compensator is used. Based upon an analysis of

the directionality properties of the plants, the authors of [SMDS8] presented an

intuitively appealing explanation of this phenomenon. Our intent in this section

is to demonstrate, using our robustness indicator, that the DV-conflguration is

indeed 1I.s difficult to robustly control when the input uncertainty is diagonal.

The plant models for both configurations are given by

PLV(a) = [1/(75a + 1)] 0.8 i (3.7.1)

and

PDV = [1/(75 + 1) -0.878 0.014] (3.7.2)Pro -[/(7a + 1 -1.0452 -0.014

respectively. The condition numbers are constant with frequency: it[PLV] =

141.7, "[PDV] = 70.8. The weighting functions used in [SMDSS] are ri(s) =

r,()= r() = 0.2(5. + 1)/(0.5. + 1), and r3(s) = 0.5(10s + 1)/10. These
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data readily verify that the robustness indicator for the case of unstructured

uncertainty (cf (3.5.12)) is large. By Proposition 3.5.5, a plant-inverting com-

pensator will therefore yield poor robustness properties, and this was indeed

verified in [SMD88] using Bode plots of the structured singular value. When a

diagonal uncertainty structure is assumed, however, the robustness indicator is

given by (3.6.2). The principal angles for the two configurations are aLv = 450

and aDV = 00, respectively. Hence only the LV-conflguration poses potential ro-

bustness difficulties, a fact also verified in [SMD88] using the structured singular

value plots.

To further illustrate the dependence of the structured singular value upon

the plant input directions, we alter the directions of the LV-configuration and in

the meanwhile keep its condition number unchanged. Define

PO(s)Pv(a)R R =Z[con -sinG J (3.7.3)e,() =e,.(,), R= sin 0 coo 0

where Z c= s - 1in4° is a matrix of the right singular vectore forSsin450  con45
°

PLv(jW) [SMI)88]. Hence, the robustness indicator for this new plant is

p[Pe] = jrrsjII4PLv co sin (3.7.4)

Plots of the structured singular value for the compensator5 F(s) = (0.7/s)Pe- (a)

venus different values of 0 are shown in Figure 3.2, and indeed we see that these

plots are consistent with the analyses in Section 3.5.

Finally, we note that the problem of aligning the plant input directions is one

6Note that this compensakt wau diucumd in (SMDS8] for 8 = 480 and whom the input
uncertainty is unstructured.
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of plant conqmtion rather than that of compensation. This follows because the

Input uncertainty in assumed to be located between the plant and compensator.

3.8 Concluding Remarks

In this Chapter we have studied a robust performance problem that arise, when

the transfer function of plant model is ill-conditioned and the modelling uncer-

tainty at the plant input has block diagonal structure. Our analysis shows that

design goas should include keeping the first- and second-order effects of input

uncertainty upon the output sensitivity function small in order to achieve robust

performance, and this poses potential design difficulties for plants having large

robustness indicators.
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Chapter 4

Several Sources of Modelling
Uncertainty

4.1 Introduction

An important problem in feedback design is to insure robustness of stability and

performance with respect to several sources of modelling uncertainty. A useful

stability margin for an important clam of modelling uncertainties can be cal-

culated using Doyle's structured singular value (SSV) [Doy82], [DWS821. By

plotting the structured singular value an a function of frequency, robustness diffi-

culties associated with a given design can be reliably detected. However, because

the structured singular value is a complicated function of the plant, compenstor

and uncertainty description, it is sometimes difficult to obtain design insights

using only such a plot. For example, if the system has a poor stability margin,

one would like to know how this may be improved by adjusting the compensator.

Moreover, some feedback design problems are inherently difficult, and one would

also like to know whether one in faced with such a problem and, if so, how a
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compensator may be selected to achieve a judicious tradeoff among conflicting

design objectives. The computation of the structured singular value via numer-

ical optimization (cf. [FaT86, [FaTS8], [HeleSi, [PFD88) renders such insights

difficult to obtain.

Our goal in the present paper is to develop results that should be useful in

obtaining insights into robustness problems associated with several modelling

uncertainties. To motivate our approach, let us consider a procedure whereby

we assess stability robustness sequentially, first with respect to uncertainties

taken one at a time, then taken two at a time, and so forth. As we proceed,

we may find that a system which is robust against all combinations of k or

fewer uncertainties can nevertheless be destabilized by combinations of k + 1,

possibly small, uncertainties. Evidently, such an instability must be caused by a

harmful interaction among these k + 1 uncertainties. It is therefore of practical

interest to have a methodology for determining the existence and strength of such

interactions. Our analysis below will identify a set of interaction parameters,

which appear to be useful for this task.

Essentially, our approach in this chapter is a generalization of that taken in

Chapters 2 and 3. We provide additional interpretations of the earlier results, and

lay the groundwork for applying our general approach to other design problems.

The remainder of this chapter is outlined as follows. In Section 4.2, we review

the definition and properties of the structured singular value. In Section 4.3 we

define the interaction parameters and show they are related to Mason's gain rule.

In Section 4.4 we derive bounds upon the structured singular value expressed in
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terms of theme parameters. Section 5 contains an analysis of the aforementioned

robust performance problem, and we conclude our discussion in Section 4.6. Some

of the results described in this chapter are discussed in [ChF89b] and [ChF9O].

4.2 Preliminaries: Properties of the Structured
Singular Value

The first step in the structured singular value analysis is to rearange the block

diagram of the feedback system into the form shown in Figure 2.1. The uneer-

taintl matrix A(s) is assumed to lie in the met 1

AT={diag[4 1 (.)] : A, E COXN and stable, IAillo < 71 i = 1,2,... ,N)

(4.2.1)

where HAiII- = sup,, #[A(jw)], and a[.] denotes the largest singular value, or the

Euclidean norm of a matrix. The interconnection matriz M(s) is a function of

the nominal plant model, the compensator, and weighting matrices introduced

to normalize the size of the uncertainties. It is stable if the feedback system

is nominally stable. At each frequency, the structured singular value, denoted

i[M], is defined2 by [Doy82].

o d4[I + MAI 9 0 VA E Aw
- .1/(minAE.(&[(AI : det[I + MA] = 0)) otherwiu

(4.2.2)

'We assume trongbout thi chapter that . Ad's in (4.2.1) are ditict. The geaeral cam o
repeated Ai'..i treated in fDoys2l, [PFDSSJ.

2We shah suppress dependence upon frequency whenever appropriate, and shall oaay
abus notations by ung the symbol A., to demote the set ci comstaat complex makices with
block diagonal structure (4.2.1).
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Define .[M] = sup. p[M(jw)J. Then, if the feedback system in Figure 2.1 is

nominally stable, it will be robustly stable aginst all uncertainty in the set Al

if and only if I.[M <1/-I.

Further properties of the structured singular value are summarized in the

following; for a complete discussion, see [Doy82]. Define the sets

D= {dag[dI, d,,, ... ,dIn.] : di E , d > 0} (4.2.3)

where I., denotes the identity matrix of dimension ni, and

U -- ( diag[ul, u,, ., tN] : 1ll = 1, %j E C'I" } (4.2.4)

The following facts provide tools for evaluating the structured singular value.

Fact 4.2.1 [DoVS2]

p[M] < inf a[DMD-1  (4.2.5)
DeD

Fact 4.2.2 [DoyS21 Let p[.] denote the spectral radius of a matrix. Then,

M "% p[X'MY] (4.2.8)

Note in particular, the upper bound" (4.2.5) is equal to f[M] when the system

has three or fewer blocks of uncertainty, namely, N < 3.

We shall partition the interconnection matrix into blocks whose dimensions

are compatible with those of the uncertainty:

M(s) = r.A)I, i,3 = 1,2,...,N, M(,a) E CIXUJ (4.2.7)

and define orj = &[M ,]. It will often be convenient to consider the simplified sta-

bility robustness problem obtained by assuming that a subset of the uncertainty
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blocks A are equal to sero. We introduce the following notation to describe such

aproblem. Let ZN = ( 1, 2, ... , N}, and defne

Ith = {{,...,i,}: il,...,ib E z, i ... # i,} (4.2.8)

The cardinalitys (). .W @hall assume that the elements ofktk

have been ordered in some fashion, and shall denote these elements by J",

= 19,29,... I(k) Henceforeachi, J isasubsetofZwithkAtinet

elements (e Example 4.3.1 for an illustration). Define

Ajlw = {A: A E A, A = 0, Vj 1 }JW) (4.2.9)

and

Mj: = (interconnection matrix M (4.2.7) with the it/ block row

and column set equal to sero, Vj Jig.} (4.2.10)

Then, it follows readily that the feedback system pictured in Figure 2.1 is robustly

stable against all uncertainties of the form (4.2.9) if and only if ^.[Mi.]J < 1/y.

For example, suppose that only one of the A4's in (4.2.1) is nonsero; ie., suppose

that we consider the set J1, = (i). Then, it follows from the definition (4.2.2)

that the feedback system in Figure 2.1 is robustly stable against all uncertainties

in the set A,Ij,, if and only if v,(jw) < i/, Vw.

4.3 Interaction Parameters

From the analysis at the close of the preceding section, it follows that if the

only nonzero blocks of the interaction matrix are those on the diagonal, then
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g4J=max, uN. In pneral, howeve, nonsero off-diagonal blocks will introduce

interactions between block.s of uncertainty, and thu. will affect the @in of the

strumctured singular value. In this section we introduce a set of interactions pa-

rametera whose magnitudes ane a function Of the off-diagoa blocks 01 M, and

we shall argue that these parameters determine the extent to which interactions

among two or more blk of uncertainty can cause stability robustnM Problems.

Consider the set of all possible permutations of the elements of all posible

k-dimensional subsets of ZN:

hk = (44 ... il) : ii'1 i E' 6 W JMW E IQ11  (4.3.1)

Note that the cadinality OfPA isqUa'l to ( y ) . (k- 1)t. We shall assume that

the elements of hr have been ordee nsome fashion, and shall denote these

subsets, JMj E is, and a Permutation RAWj Of the elements Of that subset, define

the corresponding interacton parameter of orderk:

1411lA~j = .. odel&(4.3.2)

and denote the largest of these by

Define also the corresponding loop Of lengt A;:

L(UI7w) = (1) 1 isAi2AsAi&a ... MiA (4.3.4)

Two loops LINwj) and L(I1ms) are said to be nontotschirg if runJ, ri. o
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Note that there is a one-to-one correspondence between the set of loops and the

set of interaction parameters.

Furthermore, the pin in each loop is related to the sine of the corresponding

interaction parameter.

Proposition 4.3.1: Consider a permutation IIj of the integers Jb, and the

associated loop L(IHmj). Then

sup u[(nVIA) = 'b'(n 1 ) (4.3.5)

AeAJ

Example 4.3.2 Let us illustrate our notations using the following example.

Consider N =, Z. = 1,2,3).

Loops of length 1:

It = ((1), (2), (3)), Ji = ({, 111U, ()

L(11ul) = MA4 ,j p&(IIuj) = ar, a, = nuxi oi

Loops of length 2:

, = ((1, 2), (1,3), {2, 3)}
J2i = (1,2), J = (13), Ju = (2,3)
una = (12), 12i,1 - (13), Ilni = (23)
L(1 211) = -MssA2MssA1
L(11ni) = -MsAS1'&I
L(li) = -MUASM22A2
0(n211) =

I(ni.) =

;A~n~ll V02 53



Loops of length 3:

bs = ((1,2,3)), J31 = (1,2,3)
11311 = (123), 11312 = (132)
L(IlsI) = MnA2MUASMszA1
L(118 2 ) = M8AM 32A2M21A1
1(rg1) = (612023031)' /I

A(HI12) = (01303202)'
03 = maxij.h(vjopjIU)1I/, i A ; & k

To illustrate A£-I4 and MI4,, consider J 2 . Then

Mil 0 Ma
MIJ. 0 0 0

A 1 0MU

and
MAt 0 0s

A-Ili"- 0 0 0 I111- <'Y H IASllO < -
0 0 AS

When all the uncertainties are scalars, then soare the blocks of M, and the

preceding definition of a loop reduces to that used in Muon'. gain formWa (e.g.,

Theorem 9.15.20, [ZaD63]), which may be applied to obtain a useful expression

for det[l + MAI.

Proposition 4.3.3 Anume tht z 4 = 1, i = 1,2,... , N in (4.8.1). Then,

de[I + MA] = 1 + G1 (A) + G2(A) + . + GN(A) (4.3.6)

where

Go(A) = 2 2 L(Ii3j) + R'(A) (4.3.7)
J=1 i=1

and RI(A) is a sum of products of nontouching loops of length < k, with the

property that each product contains exactly k Aj4's.

Proof: From Mason's formula, it follows that det(I + MA) can be expanded

into a sum of products of nontouching loops. The result in obtained by grouping
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theme product. into an appropriate GI(A), depending upon how many 's each

product contains.

It is clear, by construction, that each Gh(A) represents the kth order effects

of uncertainty upon det(I + MA). Furthermore, each Gk(A) Is a sum of terms

involving loops of length < k. Since the madmum gain in each loop is determined

by the corresponding interaction parameter (Proposition 4.3.1), it follows that if

the interaction parameter. of order < k are small, then the kth order effects will

be small also. We mummarise this observation by appealing to the limiting cae.

Proposition 4.3.4: Let M and A be defined as in Section 4.2, with nj = 1,i =

1,...,N. Suppose that

;h=o , 1=1,...,k (4.3.8)

Then, VA E Aco,

GI(A) = 0, = Is,...,k (4.3.9)

Keeping the interaction parameter. of order < k small is not, in general, a

neccuri condition for insuring that the kth order effects of uncertainty are small.

The reason for this is that the preceding analysis takes only gain information into

account. The following exmple illustrates this point.

Exammple 4.3.5: Consider the following interconnection matrix for N = 3,
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n= = 1, i = 1,2,3:
A= -0 1 1.
M 1 01

In this cue p = 1, but Gs(A) =0. This example shows that the third-order

effects of uncertainty may equal sero even though the interaction parameters of

order three are nonxero.

As we shall see, in the multivauiable case directionality as well as phase in-

formation is ignored. More importantly, our analysis implicitly assumes that the

M' are mutually independent. In fact, they are each functions of the plant,

compensator, and weightings. The implications of this fact will be discussed in

Section 4.5.

Extending Proposition 4.3.3 to the multivariable case is possible using the

formula for the determinant of a block partitioned matrix (e4g., [KaiSO], p. 660).

However, the complexity of the ensuing expressions renders analysis problematic.

We choose to adopt an alternate approach, by reducing the multivariable problem

to one with scalar blocks. To do this we must invoke a preliminary result.

Lemma 4.3.6: Consider the matrices M and A defined in Section 4.2 evaluated

at a fixed frequency. Suppose there exists A E A, such that (i) det[I+MAI = 0

and (i) O[A] = a. Then there exists A E A tisfyng (i) and (l) with the

additional property that =diag&, where A = ~zjA 4 , where E G 9 ,z , X E

a", and lys = II=zII- 1.

Proof: Follows from the results in Section 4 of [Doy82].

56



One consequence of the above lemma is that the definition of the structured

singular value in Section 4.2 may be modified by replacing the minimiation over

A E A. with a minimization over 6j, z, and yj. Define modified interconnection

and uncertainty matrices by

,= 4 Uay : i,j= i,... N} (4.3.10)

and

=diag{ :,j : i 19 ,.,N) (4.3.11)

Corollary 4.3.7: Consider M and A defined in Section 4.2. Then

mi {[A] : det[I + MA =0}= min ( : det[I + =0} (4.3.12)

It follows from (4.3.12) that Proposition 4.3.4 may be extended to multivari-

able systems. Specifically, we may apply Proposition 4.3.3 to det[I + W r, and

define '(-) analogously with (4.3.7).

PropositIon 4.3.8: Consider M and A defined in Section 4.2, the corresponding

interaction parameters (4.3.2-3), and the matrices M and I defined by (4.3.10-

11). Suppose that

j4=0, L=1,...,k (4.3.13)

Then, V E 6 q i = Is,...,9 N,

'(--)=0 l=I,...,k (4.3.14)
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Proof: Each d(N) is the sum of products of nontouching loops of order< 1.

Since IMqj <_ VAJ] , it follows from Proposition 4.3.1 that (4.3.13) implies

(4.3.14).

Let us now derive a result which emphasizes the difficulty inherent in ana-

lyzing robustness for a system with a large number of uncertainties. Consider

an analysis procedure whereby we analyze robustness against uncertainties taken

one at a time, then two at a time, and so forth. At the kth step of this proce-

dure, one might find that the system is robustly stable against all combinations

of fewer than k uncertainties, but may be destabilized by some combinations of

k mali uncertainties. The following result describes the extrem case of this

phenomenon.

Proposition 4.3.9: Given a permutation HINE = (isis ... iN) E PN, consider the

set of interconnection matrices

M(il, = M 1  l,96, o... A,,i,, 9 o (4.3.15)
S MI = 0, otherwise

Then, for all M E A (IIjj),

,si=0, k = 1,2,..., N-1 (4.3.16)

and

AN = JM(N.J) > 0 (4.3.17)
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Ni-thermore,

&[Mj:,, = 0, k = 1,... 9N - Ili = it... k (4.3.18)

and

[MJ = Pu (4.3.19)

It follows from (4.3.16-17) and our earlier discussion that the 1st, 2nd, ... (N-

1)st effects of uncertainty upon det(I + MA) are equal to uero. Furthermore,

stated in words, (4.3.18-19) imply that a system whose interconnection matrix

satisfies (4.3.15) cannot be destabilized by any combination of fewer than all N

uncertainties.

Proof: It follows easily from (4.3.15) and the definition of the 11's that (4.3.16-

17) are satisfied. It is also straightforward to verify that (4.3.18) holds. From

Proposition 4.3.8, we see that

det[I+ + = i+

= 1 +MhiMd2W-. 7vi6i62... 4

Selecting the zx's and y,'s so that P4 ,, = u[A,,... Nj,,, = &[MN,,] and

setting 61 = (p(Ilri))1IN, i = I,...,N - 1 and 65t = -&(lINj)) 1IN yields

det[I+--] + 0. Hence p[M] > p(Iuijj). But it is easy to verify that if

maxi 1 < I/p(n1Nj), then det[I + MA] 6 0. Hence (4.3.19) is satisfied.
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4.4 Bounds on the Structured Singular Value

In this section we derive bounds upon the structured singular value defined in

(4.2.2). We first note that most algorithm (e.g., [FaT86], [FaT88], [HeI88]) for

computing the structured singular value actually compute the upper bound in

(4.2.5), which Doyle [Doy82] has conjecttred is within 15% of the true value of

1[M]. Hence, instead we derive bounds upon the quantity infDep &[DMD- j and

argue that the qualitative information furnished by then bounds remain useful

in our methodology.

Proposition 4.4.1 Suppose that the injimum in (4.1.5) is achieved. Then,

inf a[DMD-'] ! max { 11,#,3," -"'P (4.4.1)
DEP

Proof: First note that infDep a[DMD-11 = a[bMk'- ] for some b = diag[di,,, d In,

•, dNI,] E D, if the infimum is achieved. It then follows that inf0 a[DMD-

(d,/d,)o,,, Vij. Hence

inf a[DMD>- 1]  > (4-1/d,)ai,,, • (dj,/4.,je,... (dj,1d,)a,,,.
DEP

= ,(Ibij)

V/11j E Pk. This completes the proof.

We note that this proof technique consists of finding a lower bound upon the

quantity infDe &[DMD-1J, and thus results in lower bounds upon the structured

singular value for the case of N < 3 (cf. Chapter 2). It follows that these lower
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bounds can be used in analyzing the effects of any two or three uncertainties in

the structured singular value problem for N > 3. Specifically,

I[M naz (;&,PsI'a} (4.4.2)

Alternately, one can also use (4.2.6) to derive lower bounds upon the structured

singular value, an done in [Fre89a for the case N = 2. However, the bounds ob-

tained in this way are sometimes complicated and thus may obscure information

we desire from the interaction parameters.

Proposition 4.4.2 Suppose iri > 0. Then

Furthermore, if h//N < 1, Vk, then

J[M < D I (4.4.4)

Proof: See Appendix C.

Proposition 4.4.2 provides an upper bound useful in the cue that the most

significant effects are due to the interaction of all N uncertainties, i.e., pj <

pN, Vk = 1,2,... ,N- 1. Bounds useful in other cases may also be derived by

following a procedure suggested in Chapter 2. Note, however, that the bounds

obtained in such cases may involve significant comp) ,-dty, especially when the

number of uncertainties is large. To summarise, it follows from these lower and

upper bounds that large values of the interaction parameters can lead to a large

structured singular value, and thus robustness problems. This, indeed, is consis-

tent with our analysis in the preceding section. Consequently, the bounds derived
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in this section along with the analysis in the preceding section do show that the

interaction parameters can qualitatively characterize robustnes properties. A

useful application is to analyze these parameters to gain design insights into a

given problem, as in [Fre89a], [ChFSga], and [ChF89b]. In applying this method-

ology, it is significant to note that the blocks Aj 1 of the interconnection matrix

will be mutually interrelated, and, as in the cited references, it is important to

analyze this interrelation to obtain design insights.

4.5 An Analysis Example

We now illustrate our analysis procedure by studying a three-block structured

singular value problem. Consider the linear time-invariant feedback system de-

picted in Figure 3.1. The transfer functions P(a) and F(a) are those of the plant

model and compensator, respectively. We shall assume' that the plant is square,

and that detP(s) 0 0. The signals r(s), d(s), and y(s) are the reference input,

disturbance input, and system output, respectively. Define the input open loop

transfer function, en8itivst/ function, and complementary sensitivity function:

L 1 (s) = F(a)P(s), S(s) = [I + L()] -1 , T,(a) = LI(.)[I + L,(s)]-1  (4.5.1)

and the output open loop transfer function, sensitivity function, and complemen-

tary aenaitiity function:

Lo(s) = P(.)F(a), So(s) = [I + Lo(a)]-', To(s) = Lo(s)[I + Lo(a)]-' (4.5.2)

sOur regulta extend to nonsquare plants that satify the reluant aumption d left or right
invertibility.
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We consider a benchmark robust performance problem studied in [FreSga,

[Fre89b], [SMD8j and [Ste87] with an additional source of modelling error which

we take to be an unstructured additive uncertainty. As discussed in [DWS82],

such a performance robustnes problem can be treated as an equivalent robust

stability problem against the actual sources of plant uncertainty plus an addi-

tional source of fictitioua uncertainty used to represent the performance spec-

ification. In this regard, the present problem is equivalent to the problem of

maintaining stability robust against plant uncertainty in the form of

P,(s) = [I + r2()A,(0)j-'[P(a) + r(a)As(8)][I + ri(0)Ai(a) (4.5.3)

which corresponds to the block diagram depicted in Figure 4.1. Here ri(s),

i = 1,2,3, are stable, minimum phase scalar weighting functions used to de-

scribe how the uncertainties and performance requirement vary with frequency,

and Ai(a), i = 1,2,3 are unstructured uncertainties which satisfy IIAlloo < y.

Note that AI(0) and As(.) are actual sources of plant uncertainty, while A2(8)

is the fictitious uncertainty used to represent the performance specification. Our

nominal performance goal will be achieved if the output sensitivity function sat-

isfies a frequency dependent bound

IlrgSollo < 1/Y (4.5.4)

and the vobtwt performance goal will be satisfied if VA, As, IIA.11co < '7,

II'Allo. < -Y,

IIrSSIa. < '/-1 (4.5.5)

with So = [I + PF]1- and P = [P + rsAs][I + r1A]
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Figure 4.1: Feedback SysUtm with Three Modeling Uncertainties
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We shall now discuss the stability robustness problem in detail. For purposes

of illustration, we shall mainly demonstrate this procedure which centers at an-

alysing the interaction parameters; a complete derivation of design insights for

this robust performance problem is found in jChF89bJ.

We now formulate this stability robustness problem as a three-block struc-

tured singular value problem. Our first task is to find the corresponding inter-

connection matrix. Manipulating the block diagram in Figure 4.1 yields

rT 1  -r 1 TP - I r1TIP - 1
M = -r,SOP r,So -So (4.5.6)

-rsSr -rsTrP - rsTrP - I

Next, we need to identify the interaction parameters defined in (4.3.2-3), and for

convenience we shall adopt the ordering of these parameters given as in Example

4.3.2:
Al = mW {[nrT], &[rSo], O[rSTIP-1 ] }
p(n1311) = /f&[r2SoP]&[rTrP - 1]

101121) = 5V[rSj[r1TP-lJ (4..7)
AI(nU) = /e[rSo]O[rT,P-11(
IS(I,a,) = (&[riTP-,]&[r2So5[rS$1)I3
i(lls,) = (O[frTP-a[r2SoP]u[rTrP-1 ]) 1'

We first analyse the effects that are due to each indiv'dtwd uncertainty. Note

that if the feedback system is nominally stable, then it will be robustly stable

against , 1 alone if and only if IIrTII-1 < 1/,y [DoS81J. Similar statements apply

to A2 and llr, SoII., and to A3 and lrsTP-1'II.. Hence P1 summarizes stability

robustness with respect to each of the three uncertainty sources individually.

Next, we analyze the effects of uncertainties taken two at a time. The effect

of interactions between A, and A, is quantified by p[MI,, ]I and has been studied

65



in [Fre89a, [Fre8gb]. Applying the bound (4.4.2-3) for N = 2 to this problem, it

follows that the parameter ,s(IlIs) determines the extent to which these two un-

certainties can interact to cause stability robustness difficulties even if the system

in robustly stable against A, and As individually. To prevent this undesirable

effect imposes a nontritial problem, for merely requiring #[riTJ and &[rSao] to

be small does not imply that p(llm) is also small. To this point, let the plant

condition number [GoV831 be defined by ic[P(jw)J = &(P(jw)J/g[P(jw)j.

Proposition 4.5.1 [FreS9a] Let I(IIm) be defined in (4.5.7). Then, at each

fre uency,
IS <_1:5VCP VO[rIT, lV[r2So] (4.5.8)

Since the bound (4.5.8) may be tight [Fre8gal, it follows that stability robustness

against Ai and A2 together is potentially much worse than that against each

of these two individually at frequencies for which the plant is ill-conditioned

(x[P] > 1). It was shown in [Fre89a], [Fre89b] that requiring 6(11211) to be small

imposes more stringent constraints upon the closed-loop transfer functions than

those that are due to the stability robustness requirements with respect to At or

A2 alone (i.e., IIriTzll. < 1/, Ilr2So.. < 1/y, respectively).

Similarly, we analyze the combined effects of uncertainties A2 and As.

Proposition 4.5.2 Let &(JI2s), ,s be defined in (4.5.7). Then, at each ire-

quency,

p[MIj8:.] 2<66 (4.5.9)



Proof: By definition,

P(Inui) = /5[raSoJ5[,TiP-,] _~

The proof now follows from (4.4.3) for N = 2.

Hence, Proposition 4.5.2 reveals that, unlike the problem of maintaining sta-

bility robustness with respect to A, and A2 , a feedback desin which in robust

against As and A, alone will tend to be robust with respect to these two uncer-

tainties taken together, independent of the sise of the plant condition number.

Lastly, we consider the combined effects of uncertainties A, and As.

Proposition 4.5.3 Let p(1,i), P1 be deflned in (4.5.7). Then at ech fre-

quency,

A(Ifni) < V0(1 ri I +01) (4.5.10)

(12 2 1) > O[r,TIP-,] (I ,i I -[r 1 TrJ) (4.5.11)

Proof: It follows from definition that

P(Ini) = -/u[riT1 P- ufr,,s

= V[,rTIe-P'J#[,(I + Tr)]

The proof is now completed by applying the triangle inequality.

The bounds in (4.5.10-11) exhibit that stability robustness with respect to

Ai and As together is potentially much worm than that with respect to either of
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these uncertainties alone at any frequency for which I ri(jw) I> 1/,y. As shown

in [ChFS9b], mantaining P(llm) small at such a frequency imposes a more

stringent constraint than what in necessary for achieving stability robustness

against As alone (IlrsTIP-11oo < 1/-y). However, it was shown in [ChF89b that

the two parameters p(lin) and A(lsu) are interrelated in such a way that

keeping both of them small at such a frequency imposes imiar requirements

upon the closed-loop transfer functions, and thus maintaling &(1ll1) small is

also useful for keeping p(l2) small. Hence, achieving stability robustness with

respect to A, and A2 together also tends to guarantee a certain smaller level of

stability robustness with respect to the combined effects of A, and A,.

Finally, we need to consider the simultaneous effects of all three uncertainties.

Recall that these effects are determined by the parameters p(llau) and p(l1,u).

Fortunately, for this particular problem, requiring is, and p2 to be small forces

is to be small as well.

Proposition 4.5.4 Let ;, pg, and #a be defined in (4.3.). Then, at each

frequency,

psMaz Api, ihs (4.5.12)

Proof: First, it is straightforward to show

A(lIa,,) m< Al, A2)

since

IA(Ilm)= (otriTi.P-'IurraTIP-'1lraSoP)"I/
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- (2(nii)V[,rT'pr-1]) 1/U

<

Next, following the same line establishes

A141) _< n=s ( 0, 0 )

since

iA(II31) - (V[rlTP-']V[ras$I]V[r2soI)l/

= (,P'(Ini)#r2SoJ)1/s

<

We now close this section by summing up the analysis procedure demon-

strated as above. Essentially, we decompose a complicated robust performance

problem into a sequence of more tmctabe problems in which we analyze the

interaction parameters. An important step of this method is to study interrela-

tions that exist among all interaction parameters and thus to obtain information

useful for purposes of design. For a particular robustness problem, interrelations

between blocks of the interconnection matrix do allow us to draw significant in-

sights into the problem. Finally, we note that the analysis in this section also

echoes Example 4.3.5 in showing why keeping interaction parameters of order < k

small is not in general necessary for keeping the kth order effects of uncertainties

small.
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4.6 Concluding Remarks

We have developed an analysis method for analyzing robustness problems asso-

ciated with multiple sources of modelling error. We used Mason's gain rule to

identify a set of interaction parameters which were shown to capture the essen-

tials of such problems. These parameters were further used to derive bounds

upon the structured singular value and their importance was manifested through

analyses of certain extreme cases. The analysis methodology we propose is to

decompose a robustness problem into a sequence of problems in which we ana-

lyze the interaction parameters. An important step of this method is to study

interrelations among all interaction parameters and thus draw insights useful in

design. A benchmark robust performance problem was analyzed to illustrate this

method.
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Chapter 5

Achieving Robust Performance
via H/H 2 Mixed Sensitivity
Optimization

5.1 Introduction

In this chapter we shall consider the robust performance problem of achiev-

ing good command following (equivalently, small output sensitivity) despite un-

structured multiplicative uncertainty at the plant input. This is a difficult design

problem, because achieving robust performance requires that feedback properties

at both plant input and output be manipulated simultaneously. This precludes

the naive use of multivariable loop-shaping techniques as well as of synthesis

techniques such as H/HI mixed sensitivity optimization. The goal of robust

performance may be translated into one of minimizing the structured singular

value (SSV) [Doy85]. However, direct minimization of the SSV is still an exper-

imental procedure, with many difficulties remaining to be resolved [DLP86].

In [Fre8ft], [FrMSb], and [Freg0J, a multivariable loop-shaping approach to
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this problem was presented, based upon an earlier version of the bounds derived

in Chapter 2. The approach taken was to analyze the interrelations among

the blocks of the interconnection matrix to obtain guidelines for compensation

selection. In this chapter we shall adopt an alternate approach, and analyze

the bounds to obtain guidelines for selecting weighting functions to be used in

H 2/Hoo mixed sensitivity optimization. These weighting functions will depend

upon the original weighting functions used to represent design specifications in

the robust performance problem, as well as the directional properties of the plant.

We shall show that minkiing the H 2 or HI norm of the mixed sensitivity

function with these new weightings will lend to minimize the size of the structured

singular value for the original robust performance problem. Results mrized

in this chapter appear in [LoF88], [LoF89a], [LoF89bl.

5.2 Simultaneous Uncertainty and Robust Per-
formance Problems

In this section we review relevant results from [Fre89a] and [Fre89bl. The math-

ematical problem we study has two distinct physical interpretations, either as

a simtdtaneous uncertainty problem or as a robust performance problem. In

the former, we ask that the system be robustly stable against modelling errors

occurring at two points in the feedback loop. In the latter we ask that a perfor-

mance property defined at one point be robust against uncertainty occurring at

the other. Both interpretations are useful in guiding and explaining subsequent

developments.
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Our first task is to define several important transfer functions. Consider

the linear time-invariant feedback system pictured in Figure 5.1. The transfer

functions P(e) and K(s) are those of the plant model and compensator,

respectively. We shall asume that the plant has n inputs and outputs, and that

det P(s) 0 0. The signals r(#), e(a), and y(a) are the reference input, error

signal, and system output, respectively. Properties of this system are governed

by two sets of transfer functions. Breaking the loop at the plant input yields

the input open-loop tranifer function, sensitivity function, and complementary

sensitit4ty function

Lz(s) A K()P(s), Sz(s) A [I + Lr(s)]-, Tz(s) A Lz(s) [I + Lz(,)] -  (5.2.1)

Breaking the loop at the plant output yields the output open loop transfer func-

tion, senitivity function, and complementary sensitivity function

Lo(s) A P(s) K(s), So(,) A IL~)-,To(,) A Lo(,)[I+Lo(,)]-' (5.2.2)

We shall suppose that the true plant differs from the model due to uncertainty

that is present simultaneouly at the plant input and plant output. Specifically,

we suppose that

/'(a) = [I + rg(s)a ,(a)J- P(a)[I + ri(a)A,(a)] (5.2.3)

A block diagram of the associated feedback system is in Figure 5.2. The transfer

functions Ai(s) and A2(s) used to model system uncertainty will be referred to
'Our remlts extend to nonsquare plants that .satfy the relevant suumption of left or right

invertilility.
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Krs (s)) y~s

Figure 5.i: Block Diagram of Feedback System
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r,~ (s)s)

Figure 5.2: Block Diaga With Uncertainty
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as input and output perturbations, respectively, and are assumed to be stable

and proper. In general, the size of each uncertainty will vary with frequency.

This property is modelled by using the weighting functions ri(e). With no low

of generality, these functions are assumed to be stable and minimum phase,

although they may be improper [DWS82]. The sources of each uncertainty are

now described.

Uncertainty of the form

P(a) A P(a) [I+ri()A(a)J (5.2.4)

is termed multiplicative input uncertainty. It typically arises because of unmod-

elled actuator dynamics or high frequency plant modelling errors. Suppose that

the feedback system is nominally stable and that the perturbation A, may be any

stable transfer function satisfying the upper bound 5[A 1(jw)] :5 -1 Vw. Then the

system will be robustly stable if and only if the input complementary sensitivity

function satisfies the bound [DWS82]:

olr(iw)Ti(Mw) < 1/'Y, Vw (5.2.5)

Hence a[ri(jw)T1 (jw)] is inversely proportional to a frequency dependent stabil-

ity margin against uncertainty (5.2.4)

Uncertainty of the form

P2(8) - I + ,,(°)A,()-'P(o) (5.2.6)

is termed divisive output uncertainty. Its presence may be due to modelling

errors at the plant output. For our purposes, however, it is used to represent a
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performance specification such as an upper bound upon the response of the error

signal to the reference signal shown in Figure 5.1 IDWS82. Suppose that the

feedback system is nominally stab, aud that the porturbaticm A2 may be any

stable transfer function satisfying the upper bound [A2(jw)] _ -1, Vw. Then

the system will be robustly stable if and only if the output sensitivity function

satisfies the bound [DWS82]:

0fr2(dW)SO(iW)< 1/7, VW (5.2.7)

Hence &[r2(jw)So(jw)] is inversely proportional to a frequency dependent sta-

bility margin against uncertainty (5.2.6). Alternately, if the output uncertainty

arises from an attempt to represent a performance goal, we say that the goal of

nominal command following is satisfied if (5.2.7) holds.

Testing for robust performance requires use of the structured singular value

[DWS82]. Rearransing the block diagram in Figure 5.2 into the form shown in

Figure 2.1, we have2

M rT, -rTP- 1 1 (5.2.8)[-r2SoP r2So

and

A = diagJA1, A2 1 (5.2.9)

Defining the structured singular value as in Section 2.2, we have that 0fr2SoJ <

1/'Y, VAI such that &[A1 l < -y if and only if p[M] < I/-y. Hence the design

goal of achieving robust performance can be translated into one of minimizing
2As mAl, we suppreus dependence on frequncy where convenient.
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Pao A sup. p[M(jw)j. We shall approach this problem by analysing the bounds

upon the structured singular value presented in Chapter 2.

Lemma 5.2.1: With M and A defined by (5.2.-9), the struetired oingular

value satisfies the bounds
&I [rjTz"&[r2S°] 9

,[M a >7 ai u[r- o[, 1 (5.2.10)

and

;Sm] < JOeri TgP-][r, SoPJ (5.2.11)

+ max{f[r iTzJ,],r 2So]}

It follows from Corollary 5.2.1 that if

[rjTzP-1'l[rSoPj mx([rTj ,.[r 2So]}

and

&[r1TP 1I-[rSoP] > 1 (5.2.12)

then performance robustness will be poor even if nominal performance and robust

stability are satisfactory. Hence it is desirable to know how a compensator should

be selected to prevent (5.2.12) from being satisfied. We approach this problem

by deriving a set of upper and lower bounds that are analogous to (5.2.10-11) and

that display the plant directionality properties. For simplicity of exposition, we

shall restrict our discussion to systems with two inputs and outputs. Extensions
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to n inputs and outputs are available. The following results are similar in spirit

to those of Section 2, [Fre80bl.

Denote the plant aingn,lar va!ue decomposition by

P =WTZ

= (5.2.13)
d=1

where T = diagfr,rJ contains the singular values with usual ordering, the

columns of W = [wi 2 j are the left singular vectors, and those of Z = [uixs]

are the right singular vectors. Define the coupling coefficientU

S(kl) = IrzrslltSowl IIT-1 zII (5.2.14)

The following result follows similarly to Theorem 2.2 of [Fre89bj.

Theorem 5.2.2: For each pair of plant singular values, the structured singular

value satisfies rjrTzJj&[r2SoI ]
Ip[M] > max /(, (,(5.2.15)

Suppose that we desire the structured singular value to satisfy p. < 1. Then

each lower bound implied by (5.2.15) corresponds to a nwuyrv condition for

robustness. By deriving upper bounds upon the structured singular value, it is

also possible to state sufficient conditions in terms of the coupling coefficients.

Theorem 5.2.3: For each pair of plant singular values, the structured singular
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value must satisfy

[M] + max (5.2.16)
E E 8(kL1) (rh/q)+ 5fSo
k=1 =1 a[,,So]

A tighter upper bound may be obtained if an additional orthogonality con-

dition is satisfied.

Corollary 5.2.4: Suppose that
(i) SowbJ.Sow, , k 961 (5.2.17)

(ii) Tzx.LTzqz , k 9 1

Then

&[M] < maxa ]I(k,)(.ul) + max { r } (5.2.18)

Together, Theorems 5.2.2-3 and Corollary 5.2.4 show that requiring each cou-

pling coefficient to be suitably small tends to insure that performance robustness

will be satisfactory provided that the bounds &[rTrJ < 1 and a[rsSo] < I are

satisfied.

Note first that each coupling coefficient is the product of the weightings and

two terms that are each the gain of a closed-loop transfer function in a particular

direction. It follows that the weighted condition number

x,[p] &- l,',,', ., c[P] (5.2.19)

is a particularly relevant parameter of the design problem. At frequencies for

which (5.2.19) is large, it is necessary that the sensitivity and complementary
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sensitivity functions be shaped carefully to prevent the structured singular value

from becoming large. This imposes constraints upon the open-loop singular

values.

Lemma 5.2.5: For each pair of singular values, the coupling coefficients are

bounded above and below by

Irir 2 uILo1/I1 - gIL0o1 > S(kL) > JrirJIfjLoJ/(1 + u[LoJ)' (5.2.20)

Irjr 2IiLi/I1-g[L1]j' > S(h,) > Ir,,rutLiI/(1 + [Lr])2 (5.2.21)

It also follows from the preceding theorems that the closed loop transfer func-

tions must satisfy certain directionality properties. One approach to achieving

these properties is to translate the closed-loop properties into specifications upon

the open loop transfer function. This is explored in [Fre8b] and [Fregol. In the

following section we shall pursue an alternate approach.

5.3 Robust Performance via Mixed Sensitivity
Optimization

We saw in the preceding section that the goal of robust performance may be

translated into one of manipulating the size of the coupling coefficients. In this

section we shall show how this may be done using H/HOO mixed sensitivity

optimization techniques. For simplicity of exposition, we shall consider only

yutaU with two inputs and two outputs. In this case, Theorem 5.2.2 reduces

as follows.
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Corollar 5.3.1: Necesary' conditions for achieving

'U[M<l1 (5.3.1)

are that

max{UfriTIj, ufaso) < 1 (5.3.2)

IjriTiziIIj Ijr2Sow2II(1/,) < 1 (5.3.3)

11IrS1iu -IIrgSowiII( < 1 (5.3.4)

IIriTizII -Ifr2SoweuH < 1 (5.3.5)

Note first that if (5.3.2) in satisfied, then the only one of conditions (5.3.3-8)

remaningof interest is (5.3.3)

We now briefy review the mixed sensitivity mininiisation problem Consider

the system depicted in Figure 5.3. The transfer function from the disturbance d

to the weighted control signal 11, and system output y, is given by

-IS G(a)d()

where

G~s) -WI(S)P1 ()TO(S)Wd(S) 1537
G(.)= [ WI(s)SO(S)WAe) (I37

'Recal that Therm 5.3.2 aad Corollay 5.3.4 impl tha maM- (5.3.24) ama ao t=&d
to amawe that (5.3.1) ins atbWk.
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The weighting functions Wi, W2, and W are assumed to be stable and minimm,,

phase. We shall refer to (5.3.7) as the weighted mixed sensitivity function. Define

the H ° mixed sensitivity problem as that of minimizing

IIGII-0 = sup&[G(jw)I (5.3.8)

over all internally stabilizing controllers. Similarly, we may define the H2 mixed

sensitivity problem as that of minsmizing

IGIl2 = 0 [L true Or-wT ]/~"(539

over all internally stabilizing controllers. Computationally tractable solutions

to these problems using statespace techniques have recently become available

[DGK89I.

We shall now show how to pick weighting functions so that minimizing (5.3.8)

tends to minize is.. Modifications of this procedure to the problem of m ing

(5.3.9) are found in [LoF89b.

Theorem 5.3.2: Consider M(s) and G(s) defined by (5.2.8) and (5.3.7), respec-

tively, and evaluated at a fixed frequency. Assume that the weighting. in (5.3.7)

are given by

Wd [ a 0 (5.3.10)

W, = rr,(1/a)I (5.3.)

and

w, = r ,I (5.3.12)
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where W is the matrix of plant left singular vectors (5.2.13), rl and Ts are the

weighting functions in (5.2.4) and (5.2.6), r2 is the sm ler plant singular value,

ic is the plant condition number, and x a jal > 1. Suppose that

[GJ < i (5.3.13)

Then (5.3.2-6) ae satisfied.

Proof: Define G1 = -WP-lTOWd and G2 = WISoW,. It is well-known that

V[Gj > max5[G,) (5J.14)

and, for any unit vector x,

u(GJ a 11Gz1 (6.3.15)

Notice that
G, -rsT"Z 0 O /a ](53q.16)

Since x/jal - 1 by construction, and since Z is unitary, we have from (5.3.14-15)

,[Gj _> V[r1Tij (53.17)

and, with e2 =(0 i r ,

-ilIfTg(x/a)UI (5j.18)

Similarly,

Gs=raSo W[ a 0 1  (5.3.19)
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which implies that

&[G] >_ &[r2SoJ (5.3.20)

and

a,[G] _> IIr2SowIl (5.3.21)

From (5.3.17) and (5.3.20), it follow, that (5.3.13) implies (5.3.2) and thus also

(5.3.4-6). Finally, (5.3.13), (5.3.18), and (5.3.21) taken together imply (5.3.3).

Although these are not sufficient conditions, the upper bounds in Theorem

5.2.3 suggest that minim'in III., also tends to make is. itself small, and this

conjecture appears to be borne out by our design examples.

We now discuss how weighting functions with the properties (5.3.10-12) may

be constructed. First, it may not be possible to find a rational matrix Wd(s) so

that (5.3.10) holds, because the singular vectors need not be complex analytic

and thus need not have frequency responses equal to those of rational transfer

functions. However, these vectors can often be approximated sufficiently closely

for our purposes by rational functions. (On the other hand, the smallest singu-

lar value r2 and the condition number sc can always be approximated arbitrarily

closely by the gain of a stable, rational, minimum phase transfer function.) Fi-

nally, we need to select a rational transfer function a(a). To do this we suppose

that, as is typical, the weighting functions ri and r2 have the general shape shown

in Figure 5.4. Let us now investigate the implications of requiring (5.3.2) to hold

at a frequency for which Iri(jw)I > I or Ir(jw)I > 1.
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Lemma 5.3.3: (a) Suppose that f[r 2So] < 1 and that 'r,: > 1. Then

IIriTzlI w ,ril (5.3.22)

(b) Suppose that a[rIT] < 1 and that Iril > 1. Then

II1rSowiI l I fr21 (5.3.23)

It follows that if we wish to satisfy (5.3.2) and (5.3.3) at low frequencies, for

which Irl > 1, then we should require that I1r2SoWII11 < 1. Hence we should

have lal A r at low frequencies. Similar considerations show that we should

require jal f 1 at high frequencies. Hence we shall select a function a(s) whose

gain decreases from jal = r to jaj = 1.

Of course, the weighting. described above may need iteration before a satis-

factory design is obtained.

Finally, we state dual results that shall prove useful in our example. To do

this, define the mixed sensitivity function

(= [ -W(.)T(a)WA.)] (5.324)1W,(o)P(oN)SZ(o)W,(o@)

corresponding to the block diagram in Figure 5.5.

Theorem 5.3.4: Consider M(a) and 6(s) defined by (5.2.8) and (5.3.24), r

spectively, and evaluated at a fixed frequency. Assume that the weightings in

(5.3.24) are given by

W[= Z (5.3.25)

88



Y, (S) d (s)
4

W, (S) W, (S)

K (s) + P(S) WI(s) Y2(s)

Figum 5.5: Block Dii-am fcw AjunmU Mbod SmAtivity Problem



w, = 7.I (5.3.26)

W2 = (r,,/P,2)I (5..27)

where Z is the matrix of plant right singular vectors (5.2.13), r, and r are the

weighting functions in (5.-.4) and (5.2.6), r2 is the smaller plant singular value,

M is the plant condition number, and f > 18P > 1. Suppose that

&[a] <1 5.)

Then (5.3.2-6) are satisfied.

Proof: Similar to that of Theorem 5.3.2.

The transfer function P(a) should increase from I at low frequencies to r at

high frequencies.

5.4 Design Example Using HOO Mixed Sensitiv-
ity

We now apply the procedure developed in the preceding section to the problem

of designing a robust performance longitudinal control system for a highly ma-

neuverable aircraft. This example was originally proposed by Stein [Ste84j. The

aircraft characteristics and linearized models are discussed in detail in [HBG79I.

The aircraft possesses two sets of longitudinal control surfaces: elevators and

canards. There are two available measurements: angle of attack and pitch rate.

For our discussion, we use the linearised model of the longitudinal dynamics at
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Mach 0.9, altitude 25,000 ft:

= Az+Bu

* =Cz (5.4.1)

where

-. 0226 -36.6 -18.9 -32.1 1
A = 0 -1.9 -. 93 0

.0123 -11.7 -2.63 0
0 0 1.0 0

0 01
-. 414 0

0

[ 057.3 0 0
= 0 0 0 57.31

The plant model in this fight condition is stable and minimum phase. The

singular values of the plant are shown in Figure 5.6. Since the plant condition

number is equal to the ratio of the larger to smaller singular valum, we see

from Figure 5.6 that the condition number is lrke at almost all frequencies.

The physical source for the large condition number is the ability of the control

surfaces to impart relatively large amounts of rotational energy to the arcraft,

combined with an inability to transmit relatively large amounts of kinetic anerg

to the aircraft. These facts imply that the transer function from inputs to pitch

rate has larger gain than that from inputs to vertical velocity, or angle of attack.

The weighting function for robust stability (5.2.4) is

ri(s) = 1(.018 + 1) (5.4.2)

91



1000

~j 10

00.1

frequency (rad/sec)

Figure 5.6: Plant Singular Values

92



while that for tacking performance is

r2(8) = 1 s3) (5.4.3)

Bode plots of these weighting functions appear in Figure 5.7, and a Bode plot of

the weighted condition number (5.2.19) in in Figure 5.8. As shown by [SteS4],

the optimal value of [M] for this design is p[M0jwJ = 1, VW.

We shall initially use weighting obtained by apprazimating those given in

Theorem 5.3.4, and then iterating to achieve a final satisfactory design:

0,, .0021 + 1 -. 25 -. 25 0

W1(A) = r,(8)I (5.4.5)

W2 (8) = (1/3.75],,(,)I. (5.4.6)

The constant factor in (5.4.6) arises from a crude low frequency approimation

to the function P(a)r(e). The structured singular value resulting from theme

weightings is plotted in Figure 5.9. The key features of this plot are the two

peaks, one in the crossover region and one at high frequncies that may be

reduced by penalizing the control signal 11 more heavily by adding a lead filter

tows:

Wi~s = . +80\
W() .5 /+ .) rl()I (5.4.7)

while leaving the other design weights unchanged. The structured singular value

of the second design (Figure 5.10) has a single large peak in the crossover region.

This may be reduced by using a better approzimation to the function O(a)rx(s).

Such an approximation requirm that we introduce a lead filter into (5.4.6):
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+ 3.750 ,aI 548

The structured singular value for the third design, using (5.4.4), (5.4.7), and

(5.4.8) in shown in Figure 5.11. Note that this plot is within 10% of the desired

value, and of the optimal value obtained in [3te84j. If desired, one could reduce

this peak further through additional applications of the techniques developed

in this chapter. The resulting changes in the compensator will only be minor,

however, and are likely to be dominated by effects not incorporated into the

linearized design problem.
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Chapter 6

Design for Ill-Conditioned Plants
Using LQG/LTR Method

6.1 Introduction

Multivariable extensions of classical loop-shaping ideas have recently received

much attention [DoS81], [StA87J, [SLH81j, [HuMS2I. The development of then

multivariable loop-shaping design methodologies was based upon the introduc-

tion of singular value analysis. Since the singular value tests used to analyse

stability robustness are applicable only to limited classes of plant uncertainty

[FLC82], [Doy82], [DWS82I, these design methodologies are mast successful only

when the design specifications can be precisely formulated in terms of loop trans-

fer functions at one loop breaking point or when the plant has uniform gain in

all loops.

Owing to the coupling and the directionality, feedback properties of a multi-

variable system such as stability margin and sensitivity must be evaluated at more

than one loop-breaking point, e.g., at the plant input and plant output. When the
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plant transfer function, evaluated at frequencies of interest, is an ill-conditioned

matrix, it can happen that nominal properties at one loop-breaking point are un-

acceptable even though properties at the other are good. It can also happen that

nominal properties at one loop-breaking point are extremely sensitive to uncer-

tainty elsewhere [Fre8gaj, [Fre89b], [NeM87I, [SMD88J, [Ste85I. Hence, when the

plant is ill-conditioned, and when the uncertainties are present simultaneously at

different points in the feedback loop, multivariable loop-shaping techniques such

as LQG/LTR [StA87 may fail to yield a robust design [Stee4l, [Ste85J.

Recently, some progress has been made in analyzing how to shape the loop-

transfer functions at one loop breaking point to satisfy the design goals for-

mulated in terms of loop transfer functions at different loop breaking points

[FregO It is shown that the difference between feedback properties at different

loop breaking points is closely related to the singular subspace structures of the

loop-transfer functions and the plant. These analyses yield conditions that must

be satisfied by feedback properties at one loop-breaking point to prevent poor

feedback properties at the other or to be robust against uncertainty at the other.

It turns out that, to satisfy the design goals, one has to manipulate both the sin-

gular values and the singular subspace structures of the loop-transfer functions.

However, to the best of our knowledge, no systematic synthesis procedures are

available to obtain compensators so that the resultant loops satisfy the loop

shaping conditions derived in [Fre90].

The main objective of this chapter is to try to develop such a synthesis pro-

cedure. We shall do so by incorporating design insights obtained in [FreQ0] into

the shaping of the state feedback loop in the LQG/LTR design. We will show
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that by properly selecting weighting functions, the LQG/LTR methodology can

be an effective loop-shaping technique for ill-conditioned plants.

The rest of the chapter is organized as follows. In Section 6., we introduce

some notations and preliminaries and formulate the problem considered in this

chapter. In Section 6.3, a property of the Kalman equality is discussed which

relates the right singular vectors of the return difference function of the state

feedback loop with those of the weighting function. In Section 6.4, procedures

for selecting weighting functions are suggested for the LQG/LTR target state

feedback loop design which ensure that the resultant LQG/LTR design has good

stability robustness against simultaneous uncertainties at the plant input and

output. Design examples are given in Section 6.5 to illustmte the procedures.

6.2 Preliminaries and Problem Formulations

Consider the linear time-invariant feedback system shown in Figure 6.1. P(s)

and F(s) denote the transfer functions of the plant model and the compensator,

respectively. We assume that P(s) is an m x m rational matrix and is invertible.

The signals u(s) and y(s) are the plant input and measured output, respec-

tively. Let the singular value decomposition of the plant model be denoted,

P = WTZ', where T = diag[rTri,... ,r.] contains the singular values with

usual ordering a[P] = r _ r2 > ... _ rm = g[P], W = [wui, w,..., w.] and

Z = [zI, z ,,,] are unitary matrices whose columns are the left and right

singular vectors, respectively. We shall use a boldface letter to denote the col-

'We suppress dependence upon frequency whenever approprate.
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unmn space generated by the matrix (or vector) denoted by the corresponding

uppercase (lowercase) letter. The condition number of the plant is defined as

x[PI := &[PJ/g4PJ. If the condition number is very large at some frequency,

we say the plant is Ul-conditioned at that frequency. The plant condition num-

ber is not invariant under scaling, or a change of units. Hence we must assume

throughout this chapter that pbysically meaningful units have been chosen. It

follows that, if a plant is ill-conditioned with respect to these units, then the

ill-conditioning cannot be removed simply by scaling.

For this system, the feedback system properties are governed by the following

two sets of transfer functions:

1. Input open-loop transfer function L,(a) := F(a)P(.)

Input sensitivity function Sz(a) := [I + L 1 (a)]-

Input complementary sensitivity function T1 (e) := L1 (e)[I + L1 (s)]-1

2. Output open-loop transfer function Lo(a) := P(.)F(a)

Output sensitivity functioy. So(s) := [I-+ Lo(a)]- 1

Output complementary sensitivity function To(s) := Lo(s)[I + Lo(s)]- .

When all design specifications can be accurately formulated in terms of the trans-

fer functions at one loop breaking point, then multivariable loop-shaping design

methods (e.g., [StA87]) can be applied to manipulate the shape of the transfer

functions so that the design specifications are satisfied as well as possible. How-

ever, when design specifications are formulated in terms of transfer functions at

different loop breaking points, then the multivariable loop-shaping methods may
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Figue 6.1: Linear Feedback System
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not be so readily applicable. For the problem we consider in this chapter, the

design specifications have to be formulated in terms of transfer functions at dif-

ferent loop-breaking points. The following is the problem description. It is the

same as that discussed in Chapter 5, and is restated here for ease of discussion.

Suppose that the true plant is given by

P( =) = [I + r2(o)A2(a)]P(e)[I + r(o)A1 (a)] (6.2.1)

where the unstructured uncertainties Ai,i = 1,2 lie in the met

D. := {A E CX': A i stable and VIA] < "1} (6.2.2)

and the weighting functions r(8) and r3(s) describe how the size of each uncer-

tainty varies with frequency. A,(a) is called input uncertainty and is assumed to

arise from plant or actuator modelling errors. A2(a) is called output uncertainty.

It may arise either from modelling error or from the use of fictitious uncertainty

to represent an equivalent performance specification [DWS82]. Hence, the prob-

lem we are to consider next can be interpreted either as robust stability against

simultaneous plant input and output uncertainties or as robust performance at

the plant output against uncertainty at the plant input. Our goal is to find a

compensator F(a), for given design specifications ri(s) and r2(a), such that the

feedback system in Figure 6.1 is stable when the plant model P(s) is replaced

by the true plant P(s) described in (6.1) and (6.2), i.e., we would like to achieve

stability robustness against simultaneous input and output uncertainty. This

problem is equivalent to finding a compensator such that the structured singular

value satisfies
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where
[ r1 TZ -r, TP - 1] (6.2.4)

M- = -rSOP ,'So

and the structured singular Value is defined at each frequency by 2

0, if no A E D exists with det[I + MAI = 0
1/ min{5[A] : det[I + MA] = 0 and A E D..}, otherwise. (6.5)

However, the structured singular value can only be used to judge our compensator

design and it does not give insights into how we should construct compensators

such that (6.2.3) is satisfied. To obtain such insights, bounds on the structured

singular value have been derived (see Chapters 2-4) in terms of the singular

values and vectors of the plant transfer functions together with the sensitivity

and complementary sensitivity functions used to perform singular value analysis.

Specifically, we have for M defined in (6.2.4) that

m=(ax , ,} _ j[M] 5 p+ A2 (6.2.6)

where

pI := max{[rT1 ,],[Jr 2So]} (6.2.7)

P2 := /O[,,PS,J]f[ 1,P-'J (6.2.8)

Hence, to satisfy (6.2.3), it is necessary and sufficient to keep the parameters ps

and #2 small.

It is useful to decompose an ill-conditioned plant into higher and lower gain

subsystems at frequencies of interest. Hence we partition the plant singular value

decomposition as

P = WTIZI + WT 2Zf. (6.2.9)
2Far detaib about structured sinsular Value, so (DoS2j.
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where T, = iagf[r1,...,v],Tg = dsg[T+a,...,T,], and W and 3,i = 1,2, ae

partitons of W and Z of dimensions compatible with those of T, and T2. We

shall assume that n , v+. In this case, it can happen that p2 is very large even

if pa is small, which means that the system stability is much more sensitive to

simultaneous input and output uncertainties than to either uncertainty acting

alone [Fre89a]. Assume that the gain in each subsystem given by partition (6.9)

is uniform, i.e., 61TJ] w g.[T],i = 1,2. Then it is shown [Fre 9O] that to prevent

p2 from being large, the compensator has to be chosen so that the closed-loop

transfer functions satisfy

&[ZMS]J[TgZj < 1 (6.2.10)

at frequencies for which the weighting product I rrs I is large.

Hence, if we apply a multivariable loop-shaping design method at the plant

input and would like to have stability robustness against simultaneous input

and output uncertainties or robust performance at the plant output, we must

manipulate the loop shape to satisfy the condition (6.2.10) as well as possible in

addition to meeting the design specifications at the plant input.

6.3 Properties of the LQ Regulators

The LQG/LTR procedure consists of two basic steps. The first step is called the

target state feedback loop design. In this step a state feedback loop is designed

to meet all stability and performance requirements. The second step is called

the recovery procedure where an LQG/LTR compensator is designed to asymp-

totically recover the state feedback loop. The quality of recovery is governed by
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the nonmimum phase characteristics of the plant [ZhFg01. Hence, to find an

LQG/LTR compenstor so that condition (6.2.10) is satisfied, it is necessary for

the target state feedback loop to satisfy condition (6.2.10). In the following we

shall re-examine some properties of the LQ regulator. and use those properties

to guide us in the LQ weighting selection so that the resulting state feedback

loop satisfies condition (6.2.10).

Consider a state-space realisation of the plant model P(a)

+(t) = Ax(t) + B,(t) (6.3.1)

g(t) = Cz(t) (6.3.2)

where z(t) E R" is the state, u(t) E IV is the control input, 0(t) E R"' is

the measured output. It is assumed that (CA) is observable and (A,B) is

controllable.

Suppose an LQ regulator is designed for the system. Hence the feedback law

is given by

u(t) = -K.z(t) (6.3.3)

where K, = R-BTP, and P is the unique positive definite solution of the Riccati

equation

PA + ATP - PBR- BTP + HTH = 0 (6.3.4)

In equation (6.3.4) H is a design parameter and is chosen such that (H, A) is

observable and R > 0 is a given weighting matrix.

Denote the transfer function of the LQ-optimal state feedback loop by

L(B) A KO(.)B (6.3.5)
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where #(a) = (al - A)-', and let the corresponding mesnitivity and comphmen-

tary sensitivity functions be denoted by

S(s) = (I + L(,))- (6.3.6)

and

T(,) = L(,)(I + L(s)]- (6.3.7)

respectively. It is well known that L(a) matisfies the following Kulman equality:

[I + L(jw)jR[I + L(jw)] = R + [H9(jw)Bj'[HI(jW)B]  (6.3.8)

Define the transfer function from control inputs to weighted states by

Q(o) A H(sI - A)-B (6.3.9)

By an abuse of terminology we shall call Q(s) a weighting Jniction; our motiva-

tion for this nomenclature is that we shall shape properties of the optimal state

feedback loop (6.3.5) by manipulating Q(s). Denote the singular values of the

matrix M E " " by o[M]; i = 1,...n.

Lemma 6.3.1: Suppose that R = pl in (6.3.8). Then

(i) vr[4 + L(jw)] = + (1/p)oIQ(j)1 (6.3.10)

(H) If uj is a right singular vector of Q(jw) associated with singular value ,[uQ(jw)J,

the a, is also a right singular vector of I + L(jw) associated with the singular

value cr41 + L(jw)1.

Proof: Straightforward. a
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The first part of this lemma is well-known (e.g. [DoS8l]) and has been used

extensively in multivarable loop-shaping via the LQG/LTR methodology. The

second part appears to be less well known. We shall use this result to shape the

right singular subspaces of the return difference function I + L(jw), and thus the

left singular subspaces of the sensitivity function (6.3.6).

Now suppose that the singular value decomposition of the weighting function

(6.3.9) may be separated into high- and low-gain parts dimensioned compatibly

with those of the plant (6.2.9):

Q = VEqUq [VfI V,][3 i ] 1; ] (6.3.11)

where E, = diag[o 1,.',u91, E9s = diq[, i,. . . ,o,], and V and U are parti-

tions of V, and U. whose dimension are compatible with those of E,1 and E,3 .

Proposition 6.3.2: Assume that R = pl, and suppose that the weighting

function (6.3.11) satisfies

-Q[E,,/ > 1 (6.3.12)

and

U = Z , i 1,2 (6.3.13)

Then the state feedback sensitivity function (6.3.6) satisfies

a[Z'S] C 1 (6.3.14)

Prooh It follows from (6.3.11) and Lemma 6.3.1 that the singular value de-
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composition of the return difference matrix can be written an

I+L=(Vl V2 [1 Z][ ] 6315

whereEl =.dig[l ujIp...,iT jil, E = dia[VI + + p,...,2/p,
and V = [ V v2 ] is a unitary matrix. Hence the singular value decomposition

of (6.3.6) is

[ ][El 011[' I (6.3.16)

The result follows from (6.3.12).

Recall that the complementary sensitivity function of the LQ state feedback

loop must satisfy O[T 'w)J < 2, VW (e.g. [DoSS1]). It follows from this fact and

(6.3.14) that if the plant is minimm phase so that the LTR procedure may be

successfully applied, then we can insure that (6.2.10) holds by requiring that

(6.3.12-13) hold.

It is not possible to require that (6.3.14) hold at all frequencies, because

this condition requires that some open-loop gains be large. In particular, it is

not possible for loop gains to be large at high frequencies. In such situations,

an alternate approach is to require that O[T 1Z2] C 1. (Recall that #[S(jw)J <

1, Vw.) This may be accomplished, for a minimum phase weighting Q(a), by using

cheap state feedback control. The following result is well-known (e.g. [Do8811).

Lemma 6.3.3: Let R = p1 in (6.3.8), and suppose that Q(a) in (6.3.9) is

minimm phase. Then as p -* 0, the state feedback loop transfer function

satisfies, at each frequency,

Lw) -- + ( l )w 11) (6.3.17)



when W is a unitary matrix. M

This result shows that asymptotically the open-loop state feedback singular

values satisfy v,[L(jw)I o v[Q(iw)]/V and the right s:nular subspaces of L are

apprcocimately equal to those of Q. Suppose that Q has the form (6.3.11), where

Ugj = Zi = 1,2, and #[Eg(Jw)I/,5 < 1. Then it follows from the results

of [FrL86], [Freg0] that the state feedback complementary sensitivity function

satisfies a[T(jw)Z] < 1. Again, if the plant is minimum phase, we can apply

the LTR procedure so that the (6.2.10) holds.

Hence, by properly choosing the weighting Q(s) in the state feedback loop

design, the LQG/LTR procedure can be applied to achieve stability robustness

against simultaneous input and output uncertainties.

6.4 Weighting Selection in the LQG/LTR Pro-
cedure

We can see from previous discussions that one way to meet requirement (6.2.10)

in the LQG/LTR design is to choose the LQ weighting function Q(s) so that it

has the same spread in gains and the same corresponding right singular subspaces

as the plant.

It is clear that if we let H = C, then Q(9) = C(sI - A)-IB = P(s) and the

above requirements on Q(s) are trivially satisfied. This is the simplest way to

achieve the requirements. However, it restricts the loop shapes we can have at

the input loop-breaking point. To have more freedom in selecting the loop shape

at plant input, we have to augment proper dynamics to the plant.
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1. Dynamics Augmentation at the Plant Output

One way to augment the plant is to add extra dynamics at the plant output

(see Figure 6.2). In this case the augmented system can be described by[ -'] = [4 zI+ ] , C [.](6.1
where

Ads BA 0 1 , B C= [o C. ] (6.4.2)

and W(@) := C.(aI - Aw)-B, is the dynamics we add to the plant. If we

select H = [0 C.], then the singular value and singular vector properties of the

resultant LQ feedback loop are essentially determined by the augmented plant.

This can be verified by writing down the Equation (6.3.8) for the augmented

system with the above weighting and using Lemma 6.3.1. We can see in this case

that Q(s) = H(eI - A)-'B. = W(e)P(e). Hence, W(a) should be chosen such

that the product W(a)P(a) preserves the right singular subspace structure and

the spread in gains of the plant P(a) and such that W(a)P(a) has the desired

loop shape. The following are some suggestions in how to choose W(a).

(1) The plant P(a) is ill-conditioned at all frequencies, i.e., the partition (6.2.9)

holds at all frequencies. In this case, we may choose W(a) to be

W(S) = g(S)I

where g(s) is a stable minimum phase transfer function that can be used to

manipulate the loop shape at the plant input. If the matrix of plant left singular

vectors W can be well approximated by a constant real matrix, I say W, then

"When W varies sufficently slowly with frequency, it can usually be well approximated by a
real matrix. Teclaques d approximating a complex matrix by a real matrix can be found in
(MaK771, IEdK79I.
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Figure 6.2: Augmenting the Plant at the Output
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we may let W(a) be of the following form.

W(S) =

where scalar transfer functions gi(e), i = 1, 2,... m, are selected to be stable and

minum, phase. They can be manipulated to achieve their desired loop shape.

(2) The plant P(s) in ill-conditioned only around some frequency 0 , i.e., the

partition (6.2.9) holds only around frequency &o. A procedure to obtain the

desired augmenting dynamics in as follows:

(i) Compute the singular value decomposition of P(jwo) to obtain its left sin-

gular matrix W.

(ii) Approximating W by a real matrix W.

(iii) Select scalar transfer functions #I(a), i = 1,2,... , m, such that they are

stable and minimum phase. They can be manipulated to achieve the desired

loop shape at a = jwo0 .

(iv) Form the augmenting dynamics W(s) as follows

W(a) = diag1,g(),9,(o),...,g.()W

(v) Manipulate free parameters in g4(@) to achieve desired loop shape for W(s)P(s).

The weighting selection procedure will be repeated in the LQG/LTR design until

a satisfactory result is obtained.

2. Formal Loop Shaping
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This dynamics augmentation procedure is adopted from [StA87I, [EnnS4]

which makes it very easy to manipulate the loop shape at one loop breaking

point. Suppose that the plant is stable and the desired loop shape at the plant

input can be denoted by W(s) = C.(sI - A.)-'B.. If the plant is augmented

as in Figure 6.3, then the state space representation of the augmented plant is

given by

0 A. 0],BsB.= ,C [C 0(6.4.3)

The LQ optimal feedback gain for the augmented system is obtained by solving

the Riccati equation (6.3.4) with the weighting matrices being chosen as R = I

and H = [0 C.].

As we have shown in the previous sections, feedback properties of the re-

sultant state feedback system are basically determined by the weighting Q(a) =

H(aI-A.)-B. = C.(asI-A.)-B.. Note that by selecting different A., B., C.,

we now have complete freedom in specifying the weighting function Q(s). To il-

lustrate how to select Q(a), we again consider the following two cases.

(1) The plant P(s) is ill-conditioned at all frequencies. In this case we may select

Q(o) = g(a)P(s)

The scalar transfer function g(s) can be manipulated to obtain satisfactory loop

shape at the plant input. Such a selection trivially implies that high gain/low

gain structure of P is present in Q.

(2) The plant P(s) is ill-conditioned only around some frequency wo. In this
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Figure 6.3: Formal Loop Shaping
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can, an algorithm to obtain the desired weighting function is as follows:

(i) Compute the singular value decomposition of P(joo) to obtain its right

singular matrix Z.

(ii) Approximate Z by a real matrix Z.

(iii) Select stable transfer functions gj(a), i = 1,2,...,m, so that I 91(jw)

resembles the desired loop shapes at the plant input, I g(jw) 1 g,(jw) 1,

ifi > k and I g5(JWo) I / I ga+i(jwO) Ip [P(iwo)].

(iv) Form the weighting function Q(a) as follows

Q(s) = d.a[gi(°),g 2(a),...

Again, the weighting selection procedure will be repeated in the LQG/LTR de-

sign until a satisfactory result is obtained. Comparing with the output dynamics

augmentation, the formai loop shaping method gives us more flexibility in ma-

nipulating the loop shapes to achieve design specifications. However, it usually

results in higher order controllers. As regards to which dynamics augmantation

procedure should be followed, the selection may be based on whether the right

or the left singular vectors can be better approximated by real vectors.

6.5 Design Examples

In this section, we illustrate the results of previous sections by designing a

LQG/LTR compensator for two aircraft control problems.
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Example 6.5.1 We first consider the aircraft control problem studied in [Ste84J.

The plant has two inputs and two outputs, and it is stable and minimum phase.

It has strong directionality properties that vary with frequency. The problem

formulation is the same as the one in Section 6.2. The state space representation

of the plant is given by

-0.0226 -36.6000 -18.9000 -32.1000
A 0.0000 -1.9000 0.9M3 0.0000

0.0123 -11.7000 -2.6300 0.0000

0.0000 0.0000 1.0000 0.0000J

0.0000 0.00001
B -0.4140 0.0000 [ 0.0000 57.3000 O.O000 0.0000]

0.0-77.8000 22.4000 , C- 0.0000 0.0000 0.0000 57.300
0.0000 0.0(X

The uncertainty is as described in (6.2.1) and (6.2.2) with weighting functions

given by
8+100

r () = sl
=a+3

2(j =2(s+0.03)

Plots of the plant singular values and condition number are given in Figure 6.4-

5. Note that the plant is ill-conditioned. Plots of weighting functions rz(s) and

r2(s) are given in Figure 6.6.

Our objective is to design an LQG/LTR compensator with the property that

p[M(jiw)] < 1/yVw, for -y as large as possible. We shall try to achieve this

by manipulating the bounds for 1[M, i.e., the quantities is, and p2. From

the discussion of Section 6.2 and 6.3, it follows that as long as Q shares the high

gain/low gain structure of the plant, we can simply simply concentrate on making

i small. The weighting selection can be judged by the structured singular value

plots of the resulting design.
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For our case, we firut augment the plant by a scalar factor

g~a)5. +1 8+100g(0) 'a+ +1
S+0.03 a+2000

at the plant output. This will not change the gain spread in each loop and the

plant condition number remains the same.

The target state feedback loop in obtained from (6.3.3) and (6.3.4) with

A,B,C replaced by A,,B.,C. and R = I and H = C.. The loop-transfer

recovery is obtained using the Kalman filter with the parameter q2 = 1000. The

structured singular value of the resulting design is given in Figure 6.7. One can

see that for this design, p[M(jw)J < 1.26,Vw, i.e., the system will remain stable

for simultaneous input and output uncertainties whose magnitudes are less than

2 0.8. Hence, a decent result can be obtained throw"- 'he relatively simple

LQG/LTR procedure.

Example 6.6.2 We now consider the drone lateral attitude control problem stud-

ied by Ridgely and Banda [RiB86]. We shall use this example to illustrate that

when the plant is ill-conditioned, the singular value balancing method suggested

in [Ath86] may result in a nonrobust design. The state space representation of

the plant is given by

-0.08527 -0.0001423 -0.9994 0.04142 0 0.1862
-46.86 -2.757 0.3896 0 -124.3 128.6

-0.4248 -0.06224 -0.06714 0 -8.792 -20.46
0 1 0.0523 0 0 0
0 0 0 0 -20 0
0 0 0 0 0 -20

10 0 0 0 0 20 3



1.4-_____

1.2-

4,1.0-

frequency (radisec)

Figure 6.7: Structured Sgular Value, Exmpe6.5.1
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The plant is minimum phase, but unstable. The design specifications can be

represented by the following weighting functions on the input and output uncer-

tainties
0.51+171(8) - 10

7,(1) = 0.5(a+2)

Plots of the plant singular values and condition number are given in Figure

6.8-9. Note that the plant is ill-conditioned. Plots of weighting functions rl(s)

and r2(o) are given in Figure 6.10.

First, we examine two designs given in [RiB86]. Design 1 (see Table 13.6 in

[RiBSO]) us the singular value balancing method where the plant is augmented

by adding an integrator in each loop and the weighting function in the LQ design

was chosen in such a way that the singular values of the state feedback loop were

squeezed together at low frequencies. The authors of [RiBSO] noticed that even

though this design satisfied design specifications at the plant input, it failed

to meet design specifications at the plant output. Design 2 (see Table 13.7 in

[RiB86]) also augments the plant by adding an integrator in each loop. In this

case the weighting functions in the LQ design is simply chosen as the plant, i.e.,

Q(s) = C(I - A)-'B in our notation. The authors of [RiB86] noticed that, for

this design, the design specifications were not only satisfied at the plant input

but also at the plant output. Using our results in previous sections, we are able

to explain the above observations. Clearly, the weighting selection in Design 2

happens to satisfy the directionality requirements, hence the resulting design

meets condition (6.2.10), which implies a robust design against both input and
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output uncertainties. On the other hand, since the weighting selection of Design 1

does not meet these directionality conditions and the plant is ill-conditioned, it

is not surprising that Design I results in a nonrobust design. In Figures 6.11-12,

we plot the bounds for the structured singular values of the two designs. One

can see that Design I indeed has much larger structured singular values than

Design 2.

Next, we illustrate that, by adding a little more dynamics to the plant output,

we can further improve Design 2. We first augment the plant by a scalar factor

g(,) = 10(a + 2)(a + 3)

o(o+200)

at the plant output. The target state feedback loop is obtained from (6.3.3)

and (6.3.4) with A,B,C replaced by A., B.,C. and R = I and H = C.. This

weighting selection satisfies the directionality criteria. The loop-transfer recovery

is obtained using the Kalman filter with the parameter q = 1000. The bounds for

structured singular values of the resulting design is given in Figure 6.13. One can

see that for this design, the upper bound for pIM(jw)] is les than 1.65,Vw, while

the lower bound for p[M(jw)] of Design 2 is greater than 1.7 at some frequencies.

6.6 Concluding Remarks

In this chapter, we have considered the problem of obtaining stability robustness

in the presence of simultaneous input and output uncertainties. We demonstrate

how the LQG/LTR design methodology can be effectiw!y applied to this prob-

lem. The key in the application is the weighting selection in the LQ optimal state

feedback loop design. It is shown that the right singular subspaces of the return
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difference matrix of the tarSet LQ optimal state feedback loop are uniquely de-

termined by that of the weighting functions of the LQ design. This provides an

effective means to obtain a compensator which achieves the loop-rhaping con-

ditions derived in [Freg0]. To achieve stability robustness against simultaneous

input and output uncertainties, the singular subspace structure of the plant must

be taken into account in the weighting selection. Hence, both singular values and

singular subspace structures of the loop-transfer functions should be manipulated

to achieve a satisfactory design.
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Chapter 7

Conclusions and
Recommendations for Future
Research

A number of problems remain before a satisfactory robust multivariable design

methodology is available. Some of these problems ae now described.

It appears that iU-conditioned plants may be inherently difficult to robustly

control for some classes of uncertainty. However, the saie of the plant condition

number depends upon the units chosen with which to measure the plant input

and output signals. This fact is somewhat disturbing, as inherent difficulty of

a design problem should be independent of units. A little thought, however,

suggests that changing units to reduce the size of the plant condition number

may increase the size of the plant uncertainty. Hence the difficulty of the design

problem would be preserved under scaling. Further research is necessary to

resolve this matter.

The results described above focus on analysing system properties at a fixed
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frequency. Yet it is crucial to understand design tradeofs that must be performed

between system properties in different frequency ranges. For example, it appears

that the inherent difficulty associated with ill-conditioned plants takes the form

of a frequency dependent design tradeoff. A tentative conjecture is that the

loop singular values must be separated by an amount proportional to the plant

condition number, and that the requirement for this separation aggravates the

tradeoff imposed by the Bode gain-phase relation. Verifying this conjecture seems

to require use of the multivariable gain-phase relations developed in [FrL:881.

Design limitations that are due to unstable poles and nonminimum phase

zeros are fundamental in classical control design. These tradeoffs are governed

by integral relations. An important avenue of research is to extend these results

to multivariable systems using the mathematical tools developed in rFL88].

The preceding analysis problems, and others, appear to lie at the heart of

understanding multivariable design tradeoffs. Once such an understanding is

available, it will be possible to incorporate it into design methodologies. This

should proceed along two lines. First, for systems with two or three inputs

and outputs it should be possible to develop a direct multivariable loop-shaping

methodology. Secondly, as was done in Chapters 5 and 6 of this report, methods

must be found to manipulate feedback properties expeditiously through weighting

function selection for formal synthesis procedures.
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Appendix A. Proof of Proposition 3.5.4

We shall first need several preliminary lemmas in order to prove Propoition 5A. For

convenience, we shall also denote T, = til t12 1
Lt21 t22 J

Lemma A.1 Let M be gives in (.4.) with n = 2, k =1. Them,

rank[M < 2 (A.1)

Proof: It can be readily verified that

M = di;g[rb, r, r311 l P1[-.2 -

Lemm A.2 Let M be e i (8. 4.3) s n = 2, k = 1, snd let U = dia[ul, U2, us],

V = diag[.,i, v2, vs], where U1, u2s vi, V2 E C, u3, v3,E C1x1 , 11uj11 = flv~il = 1. Then,

rank[VHM U ] < 2 (A.2)

Proof: Noting that rank[U] = rank[V] = 3, and rank[M] < 2, the lemma follows

immediately from the well-known Sylvester inequality.

Lemma A.S Lot the i teraction parameters be gives is (a.4.11-*), sad (5.4.17-i).

Suppose that n = 2, k = 1. Then theec parametere are related via

(i)

0(1,2,3) < 9s(1,3,2) +9(1,2).O[rSol +9(2,3). I rltl I

+ 2(1,3). 1 rtg I + I rtn I" I rt I Irrssol (A.s)

140



(ii)

0a(1,3,2) < A3(1,2,3) + p2(1,2) "[rso + p2(2,3)"I ritu I

+ W (1,3). I rgtn I + I ritu I" I rztn I &[raSo] (A.4)

Proof: By symmetry, it suffice, to show Part (i). Toward this end, choose u1 = U2 =

V = ", = 1, U3 = (r42KP-To)'/llr42eP-Tojl, and us = (rsSoPei)lllr3SoPelI in

Lemma A.2. Consider the Laplace expansion of det[V'MU = 0. The result follows by

noting that

Irnt,2 I nrt=, I ir3SoUsI < 0(1,2)'&jrsSo]

I riti, II v34r3SoPe I[ru4P-To] < W(2,3) I riti, I

I r-tgO re'1P-Tou I 5[rsSoPel] < pW(1,3). I r't=

Ir2ti I versSoe II rie-fP 1Touj < A'(1,3,2)

Irltl II r2t II rrSoUsI < I rtli I" I rtu I -[r3So]

and applying the triangle inequality.

Proof of Proposition 3.5.4

Proof By symmetry, we assume p(1, 2,3) = p3 with no loss o generality. Then, it

suffices to prove

p(1,2,3) < 1.62 max (p,, p2) (A.5)

Noticing that

A3(1,2,3) -A(1,3,2) = p2(1,2). p2(, 8). p2(2,3) (A.6)
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by definition, it follom from Part (i) of Lmmm A.3 that

3s( 1' 2 ,3) -< p2 I 2 ;0 2 ;(1, ) + ;0 ( 1, 2) .-&[,aS o ]
03(1,2,3)

+;0(2,3). I ,t , I +&'(1,s) • I r1 gt I

+ I rtil I" I rst2 I [ftSol

For convenience, let 0 = mWz{g, 552). The above inequality then reduces to

(3)2 - 4(4) - :_ 0

Solving this inequality yields

< (v + 2)03

This completes the proof.
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Appendix B. Proof of Proposition 3.5.6

Proo.: First note that the lower bound in (3.5.15) i a restatement of (3.4.14). In order

to show the upper bound, consider instead that M = diag[Mu, Mn, Mal + MI, where

0 0 MU
M - 0 0 M8

MS1 Mn 0

It follows from Chapter 2 that p[AM _< pi + /[Mij. From [?], it follows that p[Mi] -

maxxy p[X'MY] for X = diag[zi, x2, zs] and Y = diat[vi, vs, vs], when z and

I. are unit vectors with appropriate dimensions. It can then be readily verified that

p[Mi] < Vp'(1,3) + p (2,3). The proof is now completed by noticing that (3.5.16-18)

follow from straightforward calculations.
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Appendix C. Proof of Proposition 4.4.2

BfoMe proving Proposition 4.4.2, we first consider a partition

N
M = AM(, (C.1)

whem M() satiflme

r h0i4 Fori=l,',N+1-1,j=i+1-1;
hi41 (1) M 1 Fori= N+2-1,...,N, j=i+I- 1-N; (C.2)

0 Otherwise

Note that M(I) has .11 blocks being sero, except M1, Msj+g, -"*, MN+.-I., MNA-1 .',

MN+g.,1. Specifically, there is only one block possibly being nonzero along each block-

row and block-column. To illustrate, consider N = 4.

Example C.A: Let N = 4. Then,
. 0 M2 0 0

M() = diag[Mu, M 2 , M 3 , M44J, M(2) 0  0 M. 0

M41 0 0 0-

M(I)= 0 0T M(4) M 0 0

Proof .ofProposition 4.4.2: With no lowe of generality, we amume PN = (61o€n... ajN1) I/ N -

Note first that

P1N = DEzu [DM(2)D-11

= inf max dl •2 , .N
Lds 4''1 J

The solution to this minimization problem is obtained by setting

ii = 1

012 U.. 1 4jj

4-1 -"' Vi> 2.
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This leads to '-

=-u- f i > j

and in tum to

a[bM(L)'I = ,x{ J V ,. JN+-

IN+2-1N+2-I<.

Next, notice that

,[] <if &[DMD- 1 <I,+ pN + , v[bMl)b- 11.
DED 1=3

Hence
N N+2-1

1AN+'-i

This proves (4.4.3), and (4.4.4) is immediate.
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